

Accumulator Technology. Product Catalogue.

1. HYDAC ACCUMULATOR TECHNOLOGY FLUID ENGINEERING EFFICIENCY VIA ENERGY MANAGEMENT.

HYDAC Accumulator Technology has over 50 years' experience in research & development, design and production of Hydac accumulators.

Bladder, piston, diaphragm and metal bellows accumulators from HYDAC together form an unbeatable range and as components or units, support hydraulic systems in almost all sectors.

The main applications of our accumulators are:

- Energy storage,
- Emergency and safety functions,
- Damping of vibrations, fluctuations, pulsations (pulsation damper), shocks (shock absorber) and noise (silencer),
- Suction flow stabilisation,
- Media separation,
- Volume and leakage oil adjustment,
- Weight equalization,
- Energy recovery.

Using accumulators improves the performance of the whole system and in detail this has the following advantages:

- Improvement in the functions
- Increase in service life
- Reduction in operating and maintenance costs
- Reduction in pulsations and noise

On the one hand, this means greater safety and comfort for operator and machine.

On the other hand, HYDAC accumulators enable efficient working in all applications.

Basic criteria, such as:

- Design pressure,
- Design temperature,
- Fluid displacement volume,
- Discharge / Charging velocity,
- Fluid,
- Acceptance specifications and also
- Installation options

are important parameters required for sizing the correct accumulator.

In addition the knowledge developed by our accumulator specialists will help to select the right type of accumulator. The comprehensive range of HYDAC accessories simplifies installation and maintenance according to the specification.

2. QUALITY

Quality, safety and reliability are paramount for all HYDAC accumulator components.

They comply with the current regulations (or standards) for pressure vessels in the individual countries of installation.

In taking delivery of a HYDAC hydraulic accumulator therefore, the customer is assured of a high-quality accumulator product which can be used in every country in the world, depending on the certification.

For more details, please turn to Section 4.

All the processes involved, from development, engineering and production to approval and delivery are defined by HYDAC's certified management system and the relevant international accreditation for the manufacture of pressure vessels. In conjunction with the customer service department at HYDAC's headquarters, service is possible worldwide.

HYDAC's worldwide distributor network means that trained staff are close at hand to help our customers.

This ensures that HYDAC customers have the support of an experienced workforce both before and after sale.

CONT	ENTS	Page	Catalogue section	Page
1.	HYDAC ACCUMULATOR TECHNOLOGY	2	E 3.000	2
2.	QUALITY	2		
3.	SAFETY INFORMATION	4		
4.	REGULATIONS	5		
5.	PRODUCT OVERVIEW	6 – 8		
5.1.	BLADDER ACCUMULATORS			
5.1.1	Low pressure		E 3.202	21
5.1.2	Standard		E 3.201	29
5.1.3	High pressure		E 3.203	37
5.2.	PISTON ACCUMULATORS			
5.2.1	Standard		E 3.301	41
5.2.2	Series SK280		E 3.303	53
5.2.3	High pressure		E 3.302	57
5.3.	DIAPHRAGM ACCUMULATORS		E 3.100	63
5.4.	METAL BELLOWS ACCUMULATORS		E 3.304	71
5.5.	HYDRAULIC DAMPERS		E 3.701	77
5.6.	SPECIAL ACCUMULATORS			
5.7.	ACCUMULATOR STATIONS		E 3.653	97
5.8.	ACCUMULATOR ACCESSORIES			
5.8.1	Hydraulic accumulators with back-up nitrogen bottles		E 3.553	103
5.8.2	Charging and testing unit		E 3.501	111
5.8.3	Safety and shut-off block		E 3.551	123
5.8.4	Safety equipment for accumulators		E 3.552	147
5.8.5	Supports for hydraulic accumulators		E 3.502	155
5.8.6	ACCUSET SB		E 3.503	165
6.	INDUSTRIES AND APPLICATIONS	9 – 10		
7./8.	WEBSITE / SPECIFICATION FORMS	10 – 17		
9.	SIZING	18 – 19		
10.	NOTE	19		

3. SAFETY INFORMATION

Accumulators are closed vessels which are designed and built to hold pressurized fluids. They are charged with nitrogen which is separated from the fluid section by a piston, bladder or diaphragm. Hydraulic accumulators are specifically designed to store and then discharge pressurized fluids.

The regulations for commissioning and operating hydraulic accumulators which are in force at the place of installation must be observed. The plant operator is solely responsible for ensuring compliance with these regulations.

Relevant instructions are provided in the Operating Instructions for our products.

- Manufacturers of hydraulic accumulators and products with hydraulic accumulators must observe the following principles:
- Removal or reduction of risks, insofar as this is reasonably possible,
- Application of appropriate protective measures against risks which cannot be eliminated,
- If required, training of the users on the residual risks and instructions on appropriate special measures for reducing the risks during installation and/ or operation.

For safe handling and operation, the operator must draw up a risk assessment for the installation site, particularly in combination with other components and risks.

The resulting measures must be implemented accordingly.

implemented accordingly. In the case of fundamental risks affecting

hydraulic accumulators, e.g.

• Excessive pressure and

СЕРТИФІКАТ

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF TTAL PROPERTY ADDRESS OF THE PROPERTY ADD

a.a.

BUNDESREPUBLIK DEUTSCHLAND

Referenze OE 210.0120

LUFTFAHRT-BUNDESAMT Im Auftrag pp. Januels Unterschrift: (Samek)

Hydac Tachnology Gmbł Industriegabie 66280 Sulzbach/Saar die Genetmigung als as a HERSTELLUNGSBETRIEB FRODUCTION ORAMISATION emag. Toli 21 Hauptabschnitt A / a scordng to Par 21 Section A Suspan G BEDINGUNGEN

• Increase in temperature (in the event of fire)

we already have the relevant products available.

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell. After the hydraulic line has been connected it must be completely vented. Work on systems with hydraulic accumulators (repairs, connecting pressure gauges etc.) must only be carried out once the fluid pressure has been released.

3.1. RISK OF EXCESSIVE PRESSURE

Products:

Safety and shut-off block for the fluid side in various sizes and versions.

See catalogue section:

 Safety and Shut-off Block SAF/DSV No. 3.551

Gas safety valve and gas safety block for the gas side

Bursting discs for gas and fluid sides

- see catalogue section:
- Safety Equipment for Hydraulic Accumulators No. 3.552

3.2. RISK OF RISE IN TEMPERATURE

Products:

Safety and Shut-off Block with solenoidoperated valve (open when de-energised) in conjunction with temperature monitoring. See catalogue section:

• Safety and Shut-off Block SAF/DSV No. 3.551 or on request

Temperature fuses

CERTIFICATE OF

TUN

ZERTIFIKAT

kgeräterichtlinie für die Module

Dieses Zertifi

dass die Forde 97/23/EG: 05

Infum and. Ins guing bis 2009-03-28 jistrier-Nr. 71 202 A 001

Musch

he Americal

TECHNOLOGY GMBH

VERITAS

TYPE APPROVAL CERTIFICATE CENTRE AT NO FAILABLE The Confinement of 2 ages The arc antify that ages Hydraule Accompliantor with type diagnosism() TYPE S18330

DET NOR

No. 3.552

 see catalogue section:
 Safety Equipment for Hydraulic Accumulators

E 3.000.15/01.17

4. **REGULATIONS**

4.1. EUROPEAN PRESSURE EQUIPMENT DIRECTION (PED)

The European Directive 2014/68/EU will come into effect in July 2016. It will replace Directive 97/23/EC and will govern the design, fabrication, conformity assessment and placing on the market of pressure equipment and assemblies with a maximum permitted pressure of more than 0.5 bar. It guarantees free movement of goods within the European Community. The EU member states are not permitted to prohibit, restrict or hinder pressure equipment being placed on the market and put into service on the basis of pressurerelated risks, provided that the equipment in question meets the requirements of the European Pressure Equipment Directive, has undergone a conformity assessment and is labelled with a CE marking.

Hydraulic accumulators with a capacity of $V \le 1$ I and a maximum permitted pressure PS ≤ 1000 bar or with a pressure capacity PS • V ≤ 50 bar • I for gases of fluid group 2 (non-hazardous fluids) are subject to Article 4, section 3 of the European Pressure Equipment Directive and do not receive the CE marking.

Inspection of the equipment and installation, operational safety and repeat testing are controlled as before by national laws.

The equipment relating to safety is described in AD2000, ISO 4126 and EN 14359.

The repeat testing intervals are stipulated in the new German industrial safety regulations.

4.2. OTHER REGULATIONS

Pressure accumulators which are installed overseas (outside the EU), are supplied with the relevant test certificates required in the country of installation.

HYDAC pressure vessels can be supplied with virtually any test certificate.

Depending on the authority, the different material requirements must be observed

Details of some selected approvals are as follows:

4.2.1 **CERTIFICATE CODE = S (ASME)** Since 1985, HYDAC Technology GmbH has been authorized to label pressure equipment that was manufactured in compliance with the ASME regulations with the "ASME" certification mark.

Such pressure equipment may be placed on the market in the jurisdiction (application area) of "the National Board of Boiler and Pressure Vessel Inspectors".

4.2.2 CERTIFICATE CODE = P (KHK certificate)

For the Japanese market, HYDAC Technology GmbH has had approval as a "Self Inspecting Manufacturer" since the year 2000. Consequently, HYDAC is authorized to manufacture and test pressure vessels for the Japanese market and to import them into Japan.

4.2.3 CERTIFICATE CODE = A9 (MANUFACTURER LICENSING CHINA)

Since 1998 HÝDAC Technology GmbH has had approval from the Chinese authority "SELO" as a manufacturer of pressure vessels and valves. HYDAC is therefore authorised to import bladder, piston and diaphragm accumulators, and safety valves, into the Chinese market.

4.2.4 CERTIFICATE CODE = A11 (KGS code)

Since concluding the registration procedure in 2012 HYDAC Technology GmbH is authorized to supply pressure vessels and safety equipment according to the Korean Gas Safety (KGS) Code for Korea.

4.2.5. CERTIFICATE CODE = A6 (TR-CU)

Since 2014, regulation TR-CU 032/2014 (technical regulation of the customs union "on the safety of pressure equipment") has applied for the countries of the Eurasian Economic Community.

HYDAC Technology GmbH has been certified in accordance with the regulation to supply its product range.

4.3. CERTIFICATE TABLE

The following table lists the codes recommended for use in the model code for different countries of installation.

The country of installation must be stated at the time of ordering (see code in Model Code for the particular product: Certificate Code).

Countries not included in the list may be possible on request. Alternative test certificates and differing values may also be possible on request.

European member states and EFTA states	Certificate code (AKZ)
Austria	
Belgium	_
Bulgaria	_
Cyprus	_
Czech Republic	_
Denmark	_
Estonia	_
Finland	_
France	_
Germany	_
Great Britain	_
Greece	_
Hungary	_
Iceland	_
Ireland	– U
Italy	_
Latvia	_
Lithuania	_
Luxembourg	_
Malta	_
Netherlands	_
Norway	_
Poland	_
Portugal	_
Romania	_
Slovakia	_
Slovenia	_
Spain	_
Sweden	_
Switzerland	

Selection of other countries	Certificate code (AKZ)
Australia	F ¹⁾
Belarus	A6
Canada	S1 ¹⁾
China	A9
Hong Kong	A9
Japan	Р
Korea (Republic)	A11
New Zealand	Т
Russia	A6
South Africa	S2
Turkey	U
Ukraine	A10
USA	S

¹⁾ Registration required in the individual territories or provinces

others on request

4.4. TRANSPORT REGULATIONS FOR PRESSURE VESSELS

The transport of gas-charged accumulators must be carried out with the utmost care and in compliance with all relevant transport safety regulations (e.g. in the public domain, dangerous goods regulations, etc.).

5. PRODUCT OVERVIEW

The following overview shows the standard product range of HYDAC hydraulic accumulators. Other versions and sizes may be available – please inquire.

5.1.1 Low pressure

up to 40 bar

Nominal volume: 2.5 ... 450 l

5.1.2 Standard

5.1.3 **High pressure** Permitted operating pressure:

up to 1000 bar Nominal volume:

5.2.1 Standard

Nominal volume:

210 ... 350 bar

up to 3300 I

Permitted operating pressure:

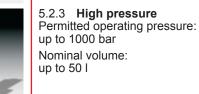
1 ... 54 |

up to 550 bar Nominal volume: 0.5 ... 200 l

Permitted operating pressure:

Permitted operating pressure:

5.1. BLADDER ACCUMULATORS



5.2. PISTON ACCUMULATORS

5.2.2 **Series SK280** Permitted operating pressure: 280 bar Nominal volume: 0.16 ... 10 l

5.3.1 Diaphragm accumulators Weld and screw type Permitted operating pressure: up to 750 bar Nominal volume: up to 4 l Advantages of HYDAC bladder accumulators:

- high discharge velocities,
- no pressure differential between fluid side and gas side,
- compact, low-maintenance,
- high charge and discharge frequencies.

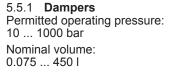
Advantages of HYDAC piston accumulators:

- minimal pressure differential between fluid side and gas side,
- large effective volume,
- variable installation position,
- monitoring of the piston position possible using a variety of systems,
- particularly suitable for back-up configurations,
- extreme flow rates,
- no sudden discharge of gas when seals are worn.

Advantages of HYDAC diaphragm accumulators:

- function-optimized and weight-optimized design,
- unlimited choice of installation positions,
- no pressure differential between fluid side and gas side,
- low-maintenance and long service life.

DIAPHRAGM ACCUMULATORS


5.3.

5.4. METAL BELLOWS ACCUMULATORS

5.5. HYDRAULIC DAMPERS

5.4.1 Metal bellows accumulator

Please contact us

5.5.2 **Silencer** Permitted operating pressure: 330 bar

5.6.1 Weight-reduced

hydraulic accumulators Over 80 % reduction in weight compared to equivalent carbon steel accumulators. The choice ranges from weight-optimized accumulators, e.g. by using aluminium, through to light-weight and ultra lightweight accumulators.

5.6.2 **Spring type accumulators** are equipped with a spring. The energy is produced by the spring force, instead of gas. Further information on request.

HYDAC supplies fully assembled piston accumulator stations which are ready for operation, complete with all the necessary valve controls, ball valves and safety equipment

- as an individual accumulator unit or
- in a back-up version with nitrogen bottles to increase the effective volume.

Advantages of the HYDAC metal bellows accumulator:

- durable
- wear-free
- media resistant over a wide range of temperatures
- See also flyer
- "Heavy Diesel Engines Metal Bellows Accumulators" No. 10.129.1

Advantages of the HYDAC hydraulic damper:

- reduces pressure pulsations,
- improves the suction performance of displacement pumps,
- prevents pipe breaks and damage to valves,
- protects measuring equipment and its function in a system,
- reduces noise level in hydraulic systems,
- reduces maintenance and servicing costs and
- extends service life of the system.

See also flyer

 "Weight-reduced accumulators" No. 3.305

5.7. ACCUMULATOR STATIONS

5.6. SPECIAL

ACCUMULATORS

E 3.000.15/01.17

5.8. ACCUMULATOR ACCESSORIES

6. **INDUSTRIES AND APPLICATIONS**

HYDAC Technology GmbH is represented in almost all industries of the world which use hydraulic accumulators.

The main sectors are industrial hydraulics, mobile technology and process technology.

Further applications in oil & gas/ offshore as well as more energy efficient systems utilizing accumulators are gaining in importance.

Listed below is a selection of examples with accumulators/dampers which are typical for these industries:

6.1. INDUSTRIAL HYDRAULICS

Automotive industry

General industrial hydraulics, e.g. energy storage

Mining machinery

- Hydraulic accumulators, e.g. in suspended monorails
- Pulsation damping
- Comfort and safety for mobile working machines

Iron and steel industry

- Accumulator to maintain the pressure in rolling mills
- Blast furnace hydraulics

Plastics machinery

- Accumulator stations for energy storage during the injection moulding process
- Pulsation damping on the hydraulic drive

Paper industry

- Energy storage for emergency functions in friction bearing hydraulics
- Energy storage in high/low pressure power units

Test rigs and test systems

- Energy storage on crash test systems
- Pulsation damping on servo hydraulic axes

Thermal power plants

- Emergency supply for turbine control system
- Pulsation damping on pumps
- Lubrication, control and seal oil supply

Forming machines

• Accumulators used to store energy to support the pump

- Support for the hydraulics for tool drive or tool change
- Energy storage in the compact hydraulics of machining centres

Wind turbines

- Accumulators in the pitch control system
- Support of the pitch drive
- Accumulators on braking units

6.2. MOBILE TECHNOLOGY

Automotive technology

- Automatic and manual transmission
- Automatic clutch systems
- Engine management systems
- Accumulators for turbocharger emergency lubrication

Construction machinery

- Accumulators in braking systems
- Chassis damping
- Bucket damping
- Boom damping on mobile cranes

Agricultural and forestry machines

- Front loader damping
- Accumulators in tractor suspension systems
 - Stone strike protection for ploughs
 - Boom suspension on field sprayers

Municipal machines

- Energy storageBoom damping
- Boom damping
- Pulsation dampersChassis damping

- Lifting and material handling
- Noise damping
- Energy recovery
- Braking systems

Shipping

- Water treatment plants (pump support)
- Pulsation damping on diesel engines
- Heave compensation (cranes)
- Emergency function for lifeboats

6.3. PROCESS TECHNOLOGY

Chemical industry

- Energy storage and pulsation damping on dosing pumps
- Suction flow stabilisation on the suction side of pumps

Loading stations / Refineries

- Shock absorption for valve closing
- Pulsation damping on pipelines

Offshore / Oil & Gas

- Accumulators to support valve closing systems
- Energy storage for deep sea rams
- Blow Out Preventers (BOP)
- Emergency function for safety systems
- Accumulators on wellhead control systems

Pipeline construction

- Energy storage for emergency actuation of valve stations
- Compressor stations

7. WEBSITE

Please visit us at the following address: <u>www.hydac.com</u>.

In addition to Industries, Service and Fluid Engineering, under **Products » Hydraulic Accumulators**, you will find the standard product range and the comprehensive range of accessories from HYDAC TECHNOLOGY GmbH.

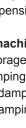
Under Downloads you will find this product catalogue in different languages in PDF format as well as other information on HYDAC accumulator products.

You can find the required product via the product search tab and download the relevant CAD model.

The web version of **ASP***light* facilitates quick and simple input, calculation and evaluation of the required accumulator parameters. For further information on **ASP***light* see section 9.4.

8. SPECIFICATION FORMS

Our aim is to provide optimal customer service both before and after purchasing the accumulator.


The following specification forms are designed to help pre-select the required accumulator/damper or accessories.

You can download them as a PDF document from the HYDAC website under **Products » Hydraulic accumulators** under the Downloads tab. You can then complete them at your convenience on your PC and send them to your HYDAC contact, e.g. by e-mail.

The areas highlighted in green constitute the minimum information required for a response or calculation.

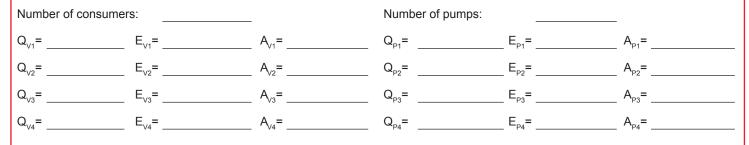
		66280 S Tel.: + Fax: +4 Inter	Industr ulzbacł 49 (0) 6 49 (0) 68 net: ww	nology GmbH iegebiet I/Saar, Germany 8 97 / 509 - 01 8 97 / 509 - 464 w.hydac.com echnik@hydac.com			
	GENERAL ACC			ECIFICATION FOR	RM (Pag	ge 1/2)	
Compony		(Subje	ct to techn	Drainet name:			
Company:				Project name:			
Name, First name:				Application:			
E-mail:				Requirement:			pieces / year
Telephone no.:					as □ spa	re part	□ original equipment
Note: The appropriate accur	nulator can be calcula	ated using the I	HYDAC	Accumulator Simulation F	Program A	SP.	
Accumulator type	Bladder accumul	ator 🛛 Pisto	on accui	mulator 🛛 Diaphra	gm accun	$rulator \square$	
<u>Fluids/medium</u>							
Fluid:				Viscosity at 20 °C:	_		cSt
Density:			kg/m³	Viscosity at operating tem	perature:		cSt
Functioning of the pu	mp			Additional details on t		ulator	
Continuous operation	-	ittent operatior		Industry:		ulator	
Accumulator data			I	Country of installation:			
Max. operating pressur	e.		bar	Design/Certification:			
Min. operating pressure			bar	Specification:			
Pre-charge pressure at			bar	Materials*			
(see catalogue section: No. 3.	· • ·			Accumulator shell:			
Ambient temperature:			°C	Fluid connection:			
Operating temperature:			°C	Elastomer:			
Complete cycle time:			s	Additional information			
				Installation dimensions:			mm
Fluid demand time sc	nedule for ONE pump			(height x Ø _{ext.})			
and ONE consumer:				Fluid connection:	Туре:		
Accumulator discharge	rate:		l/min		for thread		internal
Accumulator discharge	time:		s				external
Flow rate of the pump:			l/min		Standard:		
Pump runs continuous	y:			Gas connection:			
Pump starts after disch	arge:			Coating/finish:			
					□ externa	al	
Alternatively:		_		Spare parts/Accessories:		-	<u>m</u> ccumulators
Fluid demand diagram and/or consumers (se		5		* dependent on energing terms			
				* dependent on operating temp	erature and/	u iiula resist	ance
Remarks:							
Place	, date:			Signature:			

Signature:

HYDAC Technology GmbH

Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-mail: speichertechnik@hydac.com

GENERAL ACCUMULATOR SPECIFICATION FORM (Page 2/2)


(Subject to technical modifications)

Fluid demand diagram for several pumps and/or consumers

Designation/example:

Q = Consumer flow rate [l/s] E_{V1} E_{V2} A_{V2} E_{V3} A_{V3} Eva A_{V4} E_v = Switch-on time of consumer [s] Q [l/s] A, = Switch-off time of consumer [s] Consumers E_{p} = Switch-on time of pump [s] A_{p} = Switch-off time of pump [s] Q_{1/1} Q_{V3} Qva Time [s] Pumps EP E_{P2} A_{P1} A_{P2}

Please indicate cycle data below

Time [s]

Q [l/s]

E 3.000.15/01.17

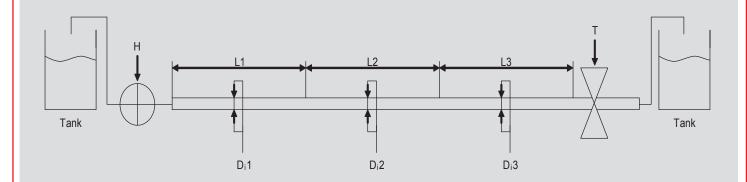
66280 S Tel.: + Fax: +4 Inter	Industri ulzbach 49 (0) 68 49 (0) 68 met: www	nology GmbH iegebiet I/Saar, Germany 8 97 / 509 - 01 8 97 / 509 - 464 w.hydac.com echnik@hydac.com		
SHOCK ABSORBER S		IFICATION FORM (P ical modifications)	age 1/2)	
Company:		Project name:		
Name, First name:		Application:		
E-mail:		Requirement:		pieces / year
Telephone no.:		a	s 🗆 spare pa	rt
Note: The appropriate accumulator can be calculated using the I Accumulator type Bladder accumulator				
Cause of the pressure shock		Accumulator data	-	
□ When pump starts □ When pump swit	ches off	Max. operating pressure:		bar
When check valve flaps (valve) close		Min. operating pressure:		bar
		Pre-charge pressure at 20 °C (see catalogue section: No. 3.000, Sizi	C (nitrogen):	bar
Fluids/media		Ambient temperature:		°C
Fluid ¹⁾ :		Operating temperature:	_	°C
Density:	_ kg/m³	Fluid connection:	Туре:	
			for thread	□ internal
Pipeline data for A SINGLE pipe				□ external
Length:	m		Standard:	
Diameter (internal):	mm	Gas connection: Coating/finish:		
Material of line:	mm	-	□ internal . □ external	
Max permitted pressure in the line:	bar	Spare parts / Accessories	: see <u>www.hy</u>	vdac.com
Total closing time of the valve:	s	Materials*	under Prod	ucts/Accumulators
Speed of sound in the system:	m/s	Accumulator shell:		
· · · · · · · · · · · · · · · · · · ·	-	Fluid connection:		
Alternatively: Pipeline data for ADDITIONAL sections of pipe (see page 2)		Elastomer:		
Pump data		Additional information of	on the accum	ulator/system
Zero head:	m	Available installation space:		m
Pressure of the pump at the operating point:	bar	Industry:		
Flow rate of the pump at the operating point:	l/min	Country of installation:		
* dependent on operating temperature and/or fluid resistance ¹⁾ please send data sheet		Design/Certification: Specification:		
Remarks:				

Signature:

E 3.000.15/01.17

HYDAC Technology GmbH

Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-mail: speichertechnik@hydac.com


SHOCK ABSORBER SPECIFICATION FORM (Page 2/2)

(Subject to technical modifications)

Pipeline data for additional sections of pipe

Designation / example

- H = Zero head of the pump [m]
- D_i = Internal diameter of the pipe [mm]
- T' = Closing time of the valve [s]
- (effectively approx. 30 % of the total closing time)
- L = Length of the pipeline [m]

Number of different pipes:

L1	=	200	m	D _i 1 =	100	mm
L2	=	50	m	D _i 2 =		
L3	=	20	m	D ₁ 3 =		

3

Typical values for speed of sound

Water	=	1200 m/s
Fuel	=	1100 m/s

Please complete below with the pipeline data

Number of different pipes:

L1	=	m	D _i 1	=	mm	L5	=	n	n	D _i 5	=	mm
L2	=	m	D _i 2	=	mm	L6	=	n	n	D _i 6	=	mm
L3	=	m	D _i 3	=	mm	L7	=	n	n	D _i 7	=	 mm
L4	=	m	D _i 4	=	mm	L8	= .	n	n	D _i 8	=	 mm

	66280 Su Tel.: +4 Fax: +4 Interr	Industri JIzbach 19 (0) 6 9 (0) 68 net: ww	nology GmbH iegebiet h/Saar, Germany 8 97 / 509 - 01 3 97 / 509 - 464 w.hydac.com chnik@hydac.com		
			SPECIFICATION F	ORM	
Company:	(Subjec	t to techn	ical modifications) Project name:		
Name, First name:					
			Application:		 . ,
E-mail:			Requirement:		pieces / year
Telephone no.:				as □ spare part	□ original equipment
Note: The appropriate pulsation	on dampers can be calculated using	g the H	YDAC A ccumulator S imula	tion Program A	SP.
Accumulator type	□ Bladder accumulator □ Piston ac	cumulat	or 🛛 Diaphragm accumula	or 🗆	
Fluids/medium					
Fluid:			Viscosity at 20 °C:		cSt
Density:		kg/m³	Viscosity at operating tem	perature:	cSt
			I		
Pump and system data			Additional details on th	e accumulator	
Oper. press./pump pressure		bar	Industry:		
Flow rate:		l/min	Country of installation:		
Speed:		1/min	Design/Certification: Specification:		
Number of displacements	3:		Design pressure:		bar
	□ single □ double-acting		Design temperature:		°C
Pump factor:	optional (if availab	ole)	Materials*		
Stroke volume:		1 dm³	Accumulator shell		
→ for piston pumps:	$V_{\rm H} = \frac{d^2 x \pi}{4} x H x 10^{-6}$		Fluid connection:		
	н 4		Elastomer:		
d = Ø piston:		mm	Additional information		
H = stroke length:		mm	Installation dimensions:		mm
► for diaphragm pumps	s: see manufacturer's specifications		(height x Ø _{ext.})	_	
Accumulator data			Fluid connection:	Туре:	
Pre-charge pressure ¹⁾ :		bar		for thread	□ internal
Operating temperature:		°C			external
Application:	pressure side suction	side		Standard:	
Required residual pulsati		%	Gas connection:		
Result:	I gas vol	ume ²⁾	Coating/finish:	□ internal	
* dependent on operating ter ¹⁾ see catalogue section: No. ²⁾ normally pre-charged with	-		Spare parts/Accessories		dac.com lcts/Accumulators
Remarks:					

Signature:

Company: Name, First name: E-mail: Telephone no.:		66280 Tel.: Fax: - Inte E-mail: s	Applica	ermany 9 - 01 - 464 com ydac.com TION FORM ttions) t name:	as □ spare part	pieces / year original equipment
Sizing example: E0 E0 Pump: Pump: Pump rpm:	0 E1 (A10VSO71 1500 1/min	E2 1 Silencer 2 Design pressu Number of pun	re: 210 ba		BE5 E5 SD inlet: nection SD inlet: nection SD outlet:	E44 E66 SAE 1 1/4" 3000 psi
Fluid:	Aral Vitam GF	Fluid density:	np pistons: 9 890 kg		ign temperature:	50 °C
Element no.	Length [m]	Ø int. [m]	Ø ext. [m]	Subsequent	connection type	Hose type
E1	0.5	0.020	0.030	Straight conn	ection	-
E2	0.4		0.200	Straight conn	ection	
E3	1.5	0.025	0.040	T-junction		4SP (DIN EN 856)
_E4	0.6	0.015	0.025	Pressure relie	ef valve	-
<u>E5</u>	0.2	0.015	0.025	Right-angle		-
<u>E6</u>	0.6	0.015	0.025	Shut-off valve	9	
Please enter designed Pump: Pump rpm: Fluid:	1/r	Design press nin Number of pur Fluid density:	np pistons:		Silencer inlet: Silencer outlet: Design temperature	
Element no.	Length [m]	Ø int. [m]	Ø ext. [m]	Subsequent	connection type	Hose type
E1						
E2						
E3						
 E4						
E5						
E6						
E7						
E8						
E9						
 E10						
E11						
E12						

Remarks:

E 3.000.15/01.17

Place, date:

Signature:

		66280 S Tel.: - Fax: + Inte	Industri Sulzbach +49 (0) 68 49 (0) 68 rnet: www	nology Gm egebiet /Saar, German 8 97 / 509 - 01 8 97 / 509 - 464 w.hydac.com chnik@hydac.com	ny 1						
METAL BELLO	NS ACCUMUL			CATION FC	ORM F	OR H	IEAV	Y DIE	SEL E	NGINE	S
Company:				Project name	e:						
Name, First name:				Application:							
E-mail:				Requiremen	t:					_ pieces	/ year
Telephone no.:						as l	⊐ spare	part	🗆 origii	nal equipr	nent
Note: The appropriate pulsatio	on dampers can be o	calculated usir	וg the H	/DAC A ccumu	lator S in	nulatio	n P rogra	am ASP			
Engine data											
Manufacturer:		max. "spill vo	olume" of	the high press	sure inje	ction p	umps:				ccm
Туре:		max. flow of	the suppl	ly line:							l/min
Design: 🗆 Inline	□ 2-stroke	max. flow of	the tank	line:							l/min
	ine□ 4-stroke										
Fuel:											
Operating conditions of	of the supply line:										
Propo	ortion of operation	min. / max. s	speed	\mathbf{p}_{\max}	at	\mathbf{T}_{\min}		\mathbf{p}_{\min}	at	T_{max}	
Engine start		/	1/min		bar		°C				
Main operation	%	/	1/min		bar		°C		bar		°C
Auxiliary operation	%	/	1/min		bar		- °C		bar		°C
Operating conditions of	of the tank line:										
Propo	ortion of operation	min. / max. s	speed	p_{max}	at	T _{min}		p _{min}	at	T _{max}	
Engine start		/	1/min		bar		°C				
Main operation	%	/	1/min		bar		°C		bar		°C
Auxiliary operation	%	/	1/min		bar		- °C		bar		°C
Additional information of	on the accumulato	r/svstom:									
Available installation space		noystem.	m	Industry:							
(L x W x H) Installation vertical:	□ Yes	□ No		Country of in	stallation	ı.					
(accumulator gas valve at top) If no, specify position:				Design/Certif							
Material:	□ Carbon steel	Stainless st	teel	or	loadon.						
(hydraulic accumulator) Finish requirement:	□ HYDAC Stand	dard (RAL 703	5)	Ship's name	(IMO):						
Gas and fluid connection:		Discal Engine		Ship classific	ation:						
Gas and huid connection.	see flyer "Heavy Metal Bellows Ac No. 10.129.1	cumulators"	S -	Spare parts/	Accesso		see <u>ww</u> under P		<u>:.com</u> /Accumi	ulators	
Remarks:											

Place, date:

Signature:

HYDAC | 17

9. SIZING

DEFINITION OF VARIABLES FOR SIZING A HYDRALLIC ACCUMULATOR Q 1

Function principle Limits for the gas pre-charge pressure Bladder accumulator	9.1. DEFINITION OF	VARIABLI	ES FOR SIZING A HYDRAULIC ACCUMULATOR
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $			Limits for the gas pre-charge pressure
Pr. V Pr. V with a permitted pressure ratio of p ₂ ; p ₅ 5 4 : 1 For HYDAC low pressure accumulators, the following must also be taken into account: Type SB43: p _{1 mm} = 20 bar Type SB43: p _{1 mm} P _{mm} = 20 bar Type SB43: p _{1 mm} = 10 bar Piston accumulators P _{mm} ≥ 2 bar (piston type 2) P _{mm} ≥ 10 bar (piston type 1) P _{mm} ≥ 10 bar (piston type 1) P _{mm} ≥ 10 bar (piston type 1) P _{mm} ≥ 0 ar Diaphragm accumulator P _{mm} 0 0 0 0 <tr< td=""><td>Bladder accumulator</td><td></td><td></td></tr<>	Bladder accumulator		
Piston accumulators			with a permitted pressure ratio of $p_2: p_0 \le 4: 1$ For HYDAC low pressure accumulators, the following must also be taken into account: Type SB40: $p_{0 max} = 20$ bar
Prove Prove Prove Prove Prove Prove Prove Prove Prove Prove 		3	
Diaphragm accumulator a) Permitted pressure ratio: p₂ : p₀ Weld type: The pressure ratio of weld-type diaphragm accumulators is between 4 : 1 and 8 : 1, depending on the design, see catalogue section Diaphragm Accumulators, No. 3, 100, section 3.1. Screw type: Al sizes: 10 : 1 Other pressure ratios on request b) p₀ ≤ 0.9 • p₁ Metal bellows accumulators a) Metal bellows accumulator with convoluted bellows: The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows: The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows: Deprive output 0, 0 = 0 + p₁	p ₀ , V ₀ p ₁ , V ₁		$p_{0,tmin} ≥ 10 \text{ bar (piston type 1)}$ $p_{0,tmin} ≤ p_1 - 5 \text{ bar}$ In extreme cases, during slow charging (isothermal) and rapid discharge (adiabatic) of the effective volume, and after accurate calculation, the gas pre-charge pressure $p_0 ≥ p_1$ can be selected.
 a) Permitted pressure ratio: p₂ : p₀ Weld type: The pressure ratio of weld-type diaphragm accumulators is between 4 : 1 and 8 : 1, depending on the design, see catalogue section Diaphragm Accumulators, No. 3.100, section 3.1. Screw type: All sizes: 10 : 1 Other pressure ratios on request b) p₀ ≤ 0.9 • p₁ Metal bellows accumulators a) Metal bellows accumulator with convoluted bellows: The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with consultation by providing the particular operating conditions and in consultation with HYDAC (see "Metal Bellows Accumulator Specification Sheet for Heavy Diesel Engines"). b) Metal bellows accumulator with diaphragm bellows: p₀ ≤ 0.9 • p, p₁ : p₀ ≤ 20 • 1 at t_{min} The required pressure ratio must be indicated when ordering. 		3	
 b) p₀ ≤ 0.9 • p₁ Metal bellows accumulators a) Metal bellows accumulator with convoluted bellows: The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows must be determined for each application by providing the particular operating conditions and in consultation with HYDAC (see "Metal Bellows Accumulator Specification Sheet for Heavy Diesel Engines"). b) Metal bellows accumulator with diaphragm bellows: p₀ ≤ 0.9 • p₁ p₂ : p₀ ≤ 20 • 1 at t_{min} The required pressure ratio must be indicated when ordering. 	P.V.	P2, V2	Weld type: The pressure ratio of weld-type diaphragm accumulators is between 4 : 1 and 8 : 1, depending on the design, see catalogue section Diaphragm Accumulators, No. 3.100, section 3.1. Screw type: All sizes: 10 : 1
 a) Metal bellows accumulator with convoluted bellows: The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows must be determined for each application by providing the particular operating conditions and in consultation with HYDAC (see "Metal Bellows Accumulator Specification Sheet for Heavy Diesel Engines"). b) Metal bellows accumulator with diaphragm bellows: p₀ ≤ 0.9 • p₁ p₂ : p₀ ≤ 20 : 1 at t_{min} The required pressure ratio must be indicated when ordering. 			
The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows must be determined for each application by providing the particular operating conditions and in consultation with HYDAC (see "Metal Bellows Accumulator Specification Sheet for Heavy Diesel Engines"). b) Metal bellows accumulator with diaphragm bellows: $p_0 \le 0.9 \cdot p_1$ $p_2: p_0 \le 20: 1$ at t _{min} The required pressure ratio must be indicated when ordering.	Metal bellows accumulators	;	
		p ₂ , V ₂	 The max. permitted or optimal pre-charge pressure of a metal bellows accumulator with convoluted bellows must be determined for each application by providing the particular operating conditions and in consultation with HYDAC (see "Metal Bellows Accumulator Specification Sheet for Heavy Diesel Engines"). b) Metal bellows accumulator with diaphragm bellows: p_o ≤ 0.9 • p.
	0 2	3	

- ① The accumulator is pre-charged with nitrogen. The separation element (piston, bladder, diaphragm, convoluted bellows) shuts off the fluid.
- 2 The minimum operating pressure should be higher than the gas pre-charge pressure. This should prevent the separation element from striking the fluid port every time fluid is discharged.
- $\ensuremath{\textcircled{}}$ Once the max. operating pressure is reached, the effective volume ΔV is available in the accumulator:
- p_0 = pre-charge pressure
- p_1 = minimum operating pressure p_2 = maximum operating pressure p_2 = maximum operating pressure
- V_0 = effective gas volume V_1 = gas volume at p₁ V_2 = gas volume at p₂

- t_0 = pre-charge temperature
- t_{min} = min. operating temperature
- t_{max} = max. operating temperature

E 3.000.15/01.17

9.2. SELECTING THE PRE-CHARGE PRESSURE

The selection of the pre-charge pressure defines the accumulator capacity. In order to obtain optimum utilization of the accumulator volume the following pre-charge pressures are recommended:

9.2.1 **Recommended values** for energy storage:

 $p_{0,t \max} = 0.9 \cdot p_{1}$

for shock absorption:

 $\begin{array}{ll} p_{0,t\,max} &= 0.6 \text{ to } 0.9 \bullet p_m \\ (p_m &= \text{average operating pressure for} \\ & \text{free flow}) \end{array}$

for pulsation damping:

 $\begin{array}{ll} p_{_{0,t\,max}} &= 0.6 \bullet p_{_{m}} \\ (p_{_{m}} &= average \mbox{ operating pressure}) \\ \mbox{or} \end{array}$

 $p_{0,t max} = 0.8 \cdot p_1$

(for several operating pressures)

During operation the separating element (piston, bladder, diaphragm, convoluted bellows) must not touch the fluid-side connection.

Since the volume of the gas increases as the temperature increases, the pre-charge pressure must be determined at the maximum operating temperature using the recommended values.

9.2.2 Limits for gas pre-charge pressure

see section 9.1.

9.2.3 Temperature effect

So that the recommended pre-charge pressures can be maintained, even at relatively high operating temperatures, the $p_{0 \text{ charge}}$ for charging and testing cold accumulators must be selected as follows:

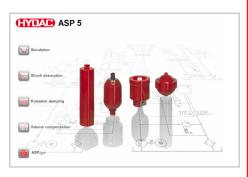
$$p_{0, t charge} = p_{0, t max} \cdot \frac{t_{charge} + 273}{t_{max} + 273}$$

 $t_0 = t_{charge}$ (pre-charge temperature in °C) To take the temperature influence into account when sizing accumulators, p_0 at t_0 must be selected as follows:

$$p_{0, t \min} = p_{0, t \max} \cdot \frac{t_{\min} + 273}{t_{\max} + 273}$$

9.3. ACCUMULATOR DIMENSIONING - ASP 5

The most important parameters for calculating the accumulator gas volume are pressure, volume and temperature.


These parameters were previously used to calculate the required accumulator size in cumbersome and complex formulas.

In 1997, HYDAC revolutionised the calculation and simulation of hydraulic accumulators by applying program routines with real gas behaviour in its **ASP- A**ccumulator **Simulation P**rogram.

After years of experience, continuous improvement and the inclusion of new functions, **ASP** has developed into calculation software which makes it possible for the behaviour of accumulators to be simulated with great accuracy.

ASP 5 has five elements:

- simulation, with the familiar advantages but in a completely new format and additional visualizations of the most important parameters,
- pressure shock damping, clearly arranged in one program window,
- pulsation damping, including corrected pump factors, also clearly presented in a program window.
- volume compensation and
- integration of the stand-alone, simplified software **ASP***light*.

Plight Operating Manual

N2 °C bar L p

Air K MPa

p₂: p₅ = 2.7 : 1

p_{0.Toto} = 79.68 bar

p_{0 Trues} = 89.93 bar

adiabat charge

He °F psi Gal p, = 100 4 5 6

isotherm discharge V₀ = 50 C p₂ =

Trax=

T₁ = 20

7 8 9

p₃ = 83.1 1 2 3

ΔV = 10 -/+ 0 .

T_{min} = 10 p_{2 Tean} = 218.14 bar

40 p_{2 True} = 171.26 bar

9.4. ACCUMULATOR DIMENSIONING SIMPLIFIED - ASPlight

HYDAC

ASP*light* is an intelligent application which takes into account real gas behaviour. This simplified software from HYDAC Accumulator Technology enables you to calculate all the necessary parameters such as pressure, volume and temperature in different units for gases such as nitrogen or helium. The maximum input for pressure is 2500 bar. Additional information fields help to evaluate the result and to determine the type of accumulator.

ASP*light* is aimed at users who need to determine the main accumulator parameters in little time. The software will be a particularly useful tool in your role as sales consultant in the field, by providing quick, straightforward calculations for hydraulic accumulators.

will be a rour role as sales providing quick, is for hydraulic

ASP*light* is operated via a single window and is language neutral. The design is comparable to a pocket calculator. Simulation curves are not shown.

ASP*light* is available online at www.hydac.com, and it can also be operated from a smartphone via the mobile website.

10. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-mail: speichertechnik@hydac.com

E 3.000.15/01.17

HYDAD INTERNATIONAL

Low pressure

Bladder Accumulators

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.

The compressibility of a gas is utilised in hydraulic accumulators for storing fluids. HYDAC bladder accumulators are based on this principle, using nitrogen as the compressible medium.

A bladder accumulator consists of a fluid section and a gas section with the bladder acting as the gas-proof screen. The fluid around the bladder is connected to the hydraulic circuit so that the bladder accumulator draws in fluid when the pressure increases and the gas is compressed. When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

HYDAC bladder accumulators can be used in a wide variety of applications, some of which are listed below:

- Energy storage
- Emergency operation
- Force equilibrium
- Leakage compensation
- Volume compensation
- Shock absorption
- Vehicle suspension
- Pulsation damping
- See catalogue section:
- Hydraulic Dampers No. 3.701

1.2. DESIGN

HYDAC low pressure bladder accumulators consist of a welded pressure vessel, a flexible bladder with gas valve and a hydraulic connection with check valve or a perforated disc.

The table shows the different models which are described in greater detail in the pages that follow:

1.3.			
Designation	Perm.	Volume	Q 1)
	pressure		
	[bar] ²⁾	[I]	[l/s]
SB40- 2.5 50	40	2.5 - 50	7
SB40- 70 220	40	70 - 220	30
SB35HB- 20 50	35	20 - 50	20
SB16A- 100 450	16		15
SB35A- 100 450	35	100 - 450	15
SB16AH- 100 450	16	100 - 450	20
SB35AH- 100 450	35		20

¹⁾ Q = max. flow rate of pressure fluid

2) higher pressures on request

1.3. BLADDER MATERIAL

The bladder material must be selected in accordance with the particular operating fluid or operating temperature, see section 2.1.

If discharge conditions are unfavourable (high p_2/p_0 pressure ratio, rapid discharge speed), the gas may cool to below the permitted temperature.

This can cause cold cracking in the elastomer. The gas temperature can be calculated using the HYDAC Accumulator Simulation Program **ASP**.

1.4. CORROSION PROTECTION

For operation with chemically aggressive media, the accumulator shell can be supplied with corrosion protection, such as plastic coating on the inside or chemical nickel-plating. If this is insufficient, then stainless steel accumulators must be used.

1.5. INSTALLATION POSITION

HYDAC bladder accumulators can be installed vertically, horizontally and at a slant. When installing vertically or at a slant, the oil valve must be at the bottom. On certain applications listed below, particular positions are preferable:

- Energy storage: vertical,
- Pulsation damping: any position from horizontal to vertical,
- Maintaining constant pressure: any position from horizontal to vertical,
- Pressure surge damping: vertical.
- Volume compensation: vertical.

If the installation position is horizontal or at a slant, the effective fluid volume and the maximum permitted flow rate of the operating fluid are reduced.

Bladder accumulators SB16A / SB35A and SB16AH / SB35AH must only be installed vertically with the gas side uppermost.

1.6. TYPE OF INSTALLATION

For strong vibrations and volumes above 1 litre, we recommend the use of HYDAC support clamps or the HYDAC accumulator installation set.

See catalogue sections:

- Supports for Hydraulic Accumulators No. 3.502
- ACCUSET SB No. 3.503

2. TECHNICAL SPECIFICATIONS

2.1. EXPLANATORY NOTES

2.1.1 **Operating pressure**

see section 3. for the particular series (may differ from nominal pressure for foreign test certificates)

2.1.2 Nominal volume

see section 3. for the particular series

2.1.3 Effective gas volume

see section 3. for the particular series Based on nominal dimensions, this differs slightly from the nominal volume and must be used when calculating the effective fluid volume.

2.1.4 Effective fluid volume Volume of fluid which is available between the operating pressures p_2 and p_1 .

2.1.5 Max. flow rate of the operating fluid

In order to achieve the max. flow rate given in the tables, the accumulator must be installed vertically. It must be noted that a residual fluid volume of approx. 10 % of the effective gas volume remains in the accumulator.

The maximum fluid flow rate was determined under specific typical conditions and is not applicable in all operating conditions.

2.1.6 Working temperature and operating fluid

The permitted working temperature of a bladder accumulator is dependent on the application limits of the metal materials and the bladder. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materia	als	Material	Temperature range	Overview of the fluids ²⁾	
		code 1)		Resistant to	Not resistant to
NBR	Acrylonitrile	2	-15 °C + 80 °C	 Mineral oil (HL, HLP) 	 Aromatic hydrocarbons
	butadiene rubber			 Flame-resistant fluids from the groups HFA, HFB, HFC 	 Chlorinated hydrocarbons (HFD-S)
		5	-50 °C + 50 °C	• Synthetic ester (HEES)	 Amines and ketones
				• Water	 Hydraulic fluids of type HFD-R
		9	-30 °C + 80 °C	• Sea water	• Fuels
ECO	Ethylene oxide	3	-30 °C +120 °C	Mineral oil (HL, HLP)	Aromatic hydrocarbons
	epichlorohydrin rubber			 Flame-resistant fluids from the HFB group 	 Chlorinated hydrocarbons (HFD-S)
				 Synthetic ester (HEES) 	 Amines and ketones
				• Water	 Hydraulic fluids of type HFD-R
				• Sea water	 Flame-resistant fluids from the groups HFA and HFC
					● Fuels
IIR	Butyl rubber	4	-50 °C +100 °C	 Hydraulic fluids of type HFD-R 	 Mineral oils and mineral greases
				• Flame-resistant fluids from the	 Synthetic ester (HEES)
				group HFC • Water	 Aliphatic, chlorinated and aromatic hydrocarbons
					• Fuels
FKM	Fluorine rubber	6	-10 °C +150 °C	 Mineral oil (HL, HLP) 	 Amines and ketones
				 Hydraulic fluids of type HFD, 	Ammonia
				 Synthetic ester (HEES) 	 Skydrol and HyJet IV
				• Fuels	● Steam
				 Aromatic hydrocarbons 	
				Inorganic acids	

¹⁾ see section 2.2. Model code, material code, accumulator bladder

2) others available on request

2.1.7 Gas charging

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 µm.

If other gases are to be used, please contact us for advice.

2.1.8 Limits for gas

pre-charge pressure

 $p_0 \le 0.9 \bullet p_1$ with a permitted pressure ratio of:

- $p_2 : p_0 \le 4 : 1$
- p₂ = max. operating pressure

 p_0^- = pre-charge pressure For HYDAC low pressure accumulators, the following must also be taken into account:

p_{0 max} = 20 bar* Type SB40: Type SB35A/AH: $p_{0 max} = 10 bar$

 $p_{0 max} = 10 bar$ Type SB35HB:

* in model with perforated disc

2.1.9 Certificate codes

Country	Certificate code				
EU member states	(AKZ)				
Australia	 F ¹⁾				
Belarus	A6				
Canada	S1 ¹⁾				
China	A9				
Hong Kong	A9				
Iceland	U				
Japan	Р				
Korea (Republic)	A11				
New Zealand	Т				
Norway	U				
Russia	A6				
South Africa	S2				
Switzerland	U				
Turkey	U				
Ukraine	A10				
USA	S				
¹⁾ Registration required in the individual territories or provinces.					

others on request

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell. After the hydraulic line has been connected it must be completely vented.

Work on systems with hydraulic accumulators (repairs, connecting pressure gauges etc) must only be carried out once the pressure and the fluid have been released.

The operating instruction must be followed! No. 3.201.BA

Note:

Application examples, accumulator sizing and extracts from approvals regulations relating to hydraulic accumulators can be found in the following catalogue section:

 HYDAC Accumulator Technology No. 3.000

- 2.2. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC. <u>SB40 A - 100 F 7 / 112 U - 40 A</u> Series Type code no details = standard
- H = high flow
- N = increased flow, standard oil valve dimensions
- A = shock absorber
- B = bladder top-removable

Combinations must be agreed with HYDAC

Nominal volume [I]

- Fluid connection A = standard connection, thread with internal seal face
- F = flange connection
- C = valve mounting with screws on underside
- E = sealing surfaces on front interface (e.g. on thread M50x1.5 valve)
- G = external thread
- S = special connection, to customer specification

Gas side

- = standard model
- 2 = back-up model
- 3 = gas valve 7/8-14UNF with M8 female thread
- 4 = gas valve 5/8-18UNF
- gas valve M50x1.5 in accumulators smaller than 50 I 5 =
- 6 = 7/8-14UNF gas valve
- 7 = M28x1.5 gas valve
- 8 = M16x1.5 gas valve (with M14x1.5 bore in gas valve)
- 9 = special gas valve, to customer specification

Material code

dependent on operating medium standard model = 112 for mineral oils

others on request

Fluid connection

- 1 = carbon steel
- 2 = high tensile steel
- 3 = stainless steel²
- 6 = low temperature steel

Accumulator shell

- 0 = plastic coated (internally)
- 1 = carbon steel
- 2 = chemically nickel-plated (internal coating)
- 4 = stainless steel 2)
- 6 = low temperature steel Accumulator bladder 1) 3) 4)
- 2 = NBR 3 = ECO
- 4 = IIR
- 5 = NBR 5) 6 = FKM
- 7 = other
- 9 = NBR 5)

Certification code U = European Pressure Equipment Directive (PED)

Permitted operating pressure (bar)

Connection

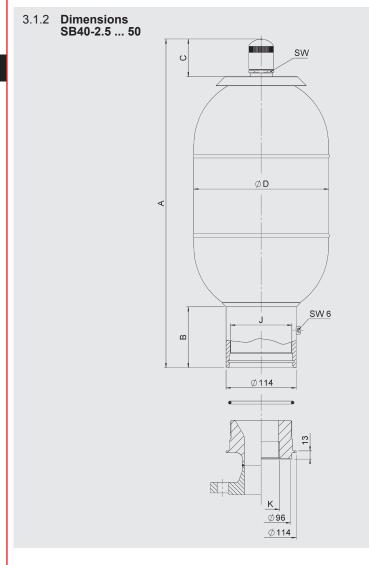
- Thread, codes for fluid connections: A, C, E, G
- A = thread to ISO228 (BSP)
- B = thread to DIN13 or ISO965/1 (metric)
- C = thread to ANSI B1.1 (UN..-2B seal SAE J 514)
- = thread to ANSI B1.20.1 (NPT) D
- S special thread, to customer specification

Flange, codes for fluid connection: F

- A = EN 1092-1 welding neck flange
- B = flange ASME B16.5
- C = SAE flange 3000 psi
- D = SAE flange 6000 psi
- S = special flange, to customer specification

Required gas pre-charge pressure must be stated separately!

- when ordering a spare bladder, please state diameter of the smaller shell port
- dependent on type and pressure range standard materials, all other materials on request
- Eeastomer types not available for all bladder sizes observe temperate ranges, see section 2.1.


LOW PRESSURE ACCUMULATOR TYPES 3.

3.1. STANDARD BLADDER ACCUMULATORS SB40-2.5 ... 50

3.1.1 Design

HYDAC standard low pressure accumulators consist of:

- A welded pressure vessel which can be treated with various types of corrosion protection for chemically aggressive fluids, or can be supplied in stainless steel.
- A bladder with gas valve. The bladders are available in the elastomers listed under section 2.1.
- A hydraulic connection with a perforated disc which is held in place with retaining ring.
- In addition, we can offer suitable adapters for connection to the hydraulic system.

SB40-2.5 ... 50

|--|

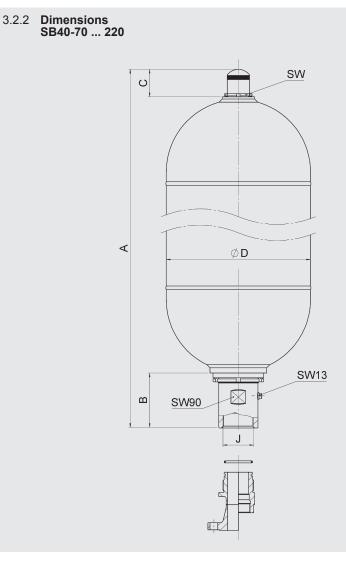
		<u><u> </u></u>		· · ·	/					
Nominal		Weight	А	В	С	ØD	J	K	SW	Q ¹⁾
volume	volume							thread		
[1]	[[]	[kg]	[[mm]	[[mm]	[mm]	[mm]	ISO DIN 13	ISO 228	[mm]	[l/s]
2.5	2.5	9	541	122		108				
5	5	13	891	122		100				
10	9.3	14	533		68		M100x2	G 2	36	7
20	18	23	843	106		219	1011002	62		ľ
32	33.5	38	1363	100		219				
50	48.6	52	1875		78				68 ²⁾	

¹⁾ Q = max. flow rate of operating fluid (at approx. 0.5 bar pressure drop via connection) 2) use C-spanner

Spare parts SB40-2.5 ... 50 6 3 2 10 11 12 13 14 16 15 Description Item Bladder assembly 1) consisting of: 2 Bladder 3 Gas valve insert* 4 Retaining nut 5 Seal cap Protective cap 6 O-ring 7 Seal kit consisting of: O-ring 7 Bleed screw 13 Seal ring 14 O-ring 16 Repair kit¹⁾ consisting of: Bladder assembly (see above) Seal kit (see above) Hydraulic connection assembly consisting of: Perforated disc 10 Anti-extrusion ring 11 Retaining ring 12 Bleed screw 13 Seal ring 14

3.1.3

O-ring * available separately


¹⁾ When ordering, please state diameter of the smaller shell port Accumulator shell (item 1) not available as a spare part Adapter (item 15) incl. O-ring (item 16) available as an accessory, please ask

16

3.2. BLADDER ACCUMULATOR SB40-70 ... 220

3.2.1 Design

- HYDAC low pressure accumulators, type SB40-70 ... 220 consist of:
- A welded pressure vessel which is compact and yet suitable for high flow rates and large volumes. The pressure vessel is manufactured in carbon steel or in stainless steel.
- A bladder with gas valve.
- A hydraulic connection with non-return valve.

SB40-70	220									
Permitted operating pressure 40 bar (PED)										
Nominal	Eff. gas	Weight	A	В	С	ØD	J	SW	Q ¹⁾	
volume	volume	_	max.				thread ISO			
[1]	[I]	[kg]	[mm]	[mm]	[mm]	[mm]	228	[mm]	[l/s]	
70	65	73	1128							
100	111	99	1655			356				
130	133	130	1905	136	69		G 2 1/2	68 ²⁾	30	

406

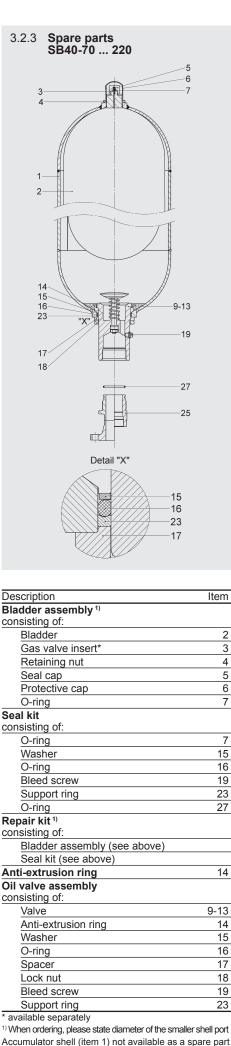
¹⁾ Q = max. flow rate of operating fluid

175

197

2101

2348


192

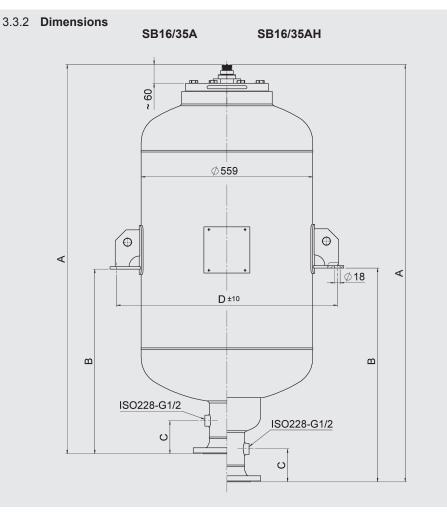
221

2) use C-spanner

190

220

Accumulator shell (item 1) not available as a spare part Adapter (item 25) incl. O-ring (item 27) available as an accessory, please ask 17


E 3.202.5/01

3.3. LOW PRESSURE ACCUMULATORS SB16/35A AND SB16/35AH

3.3.1 Design

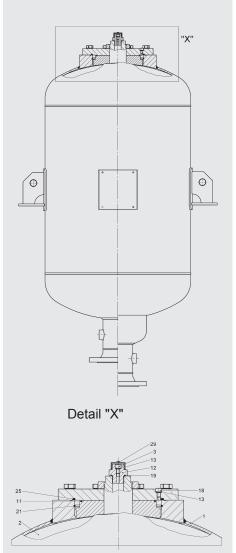
HYDAC low pressure bladder accumulators for large volumes, type SB35A and SB16A are in a weld construction in carbon steel or stainless steel.

The hydraulic outlet is covered by a perforated disc which prevents the flexible bladder from extruding from the shell. The bladder is top-removable.

SB16/35A

Permitted operating pressure 16/35 bar (PED)

Nominal	Eff. gas	Weight		A		В		С		D ±10	
volume	volume			(approx	(.)	(approx	(.)	(approx	(.)		
		[kg]		[mm]		[mm]		[mm]		[mm]	
[I]	[I]	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A	SB16A	SB35A
100	106	110	144	854	881	398	418			720 728	
150	149	127	171	1044	1076	493	578]			728
200	203	149	208	1275	1318	691	699	108	121		
300	288	178	261	1644	1701	920	937	100			
375	374	214	315	2020	2086	1063	1083]			
450	453	244	364	2361	2436	1234	1258]			


Flange to EN1092-1/11 / DN100 / PN16 or PN40 others on request

SB16/35AH

Permitted operating pressure 16/35 bar (PED)

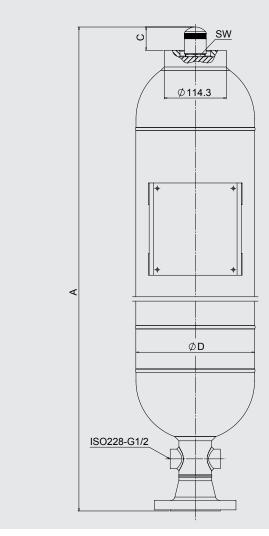
Nominal	Eff. gas	Weight		A		В		С		D ±10	
volume	volume			(approx	.)	(approx	.)	(approx	.)		
		[kg]		[mm]		[mm]		[mm]		[mm]	
[I]	[I]	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH
100	106	118	153	945	971	488	508			720 728	
150	149	135	180	1135	1166	638	641				728
200	203	157	217	1366	1408	754	762	108	121		
300	288	186	270	1735	1791	988	1000	100	121	720	
375	374	222	324	2111	2176	1127	1146]			
450	453	252	373	2452	2526	1298	1321				

3.3.3 Spare parts SB16/35A, SB16/35AH

Description	Item
Bladder	2
Gas valve assembly consisting of:	
Screw plug	3
Gas valve body	12
Seal ring	13
O-ring	19
Protective cap	29
Seal kit consisting of:	
O-ring	11
Seal ring	13
Vent screw	18
O-ring	19
Retaining ring	21
O-ring	25
Accumulator shell (item 1) not available	e as a spare part

E 3.202.5/01.17

Flange to EN1092-1/11 / DN100 / PN16 or PN40

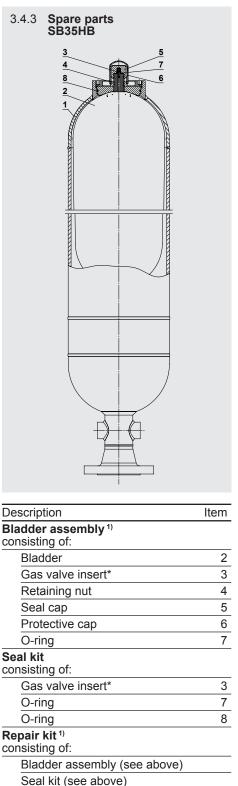

3.4. HIGH FLOW BLADDER ACCUMULATOR SB35HB

3.4.1 Design

HYDAC high flow bladder accumulators type SB35HB are high performance accumulators for flow rates of up to 20 l/s at 2 bar Δp .

They consist of a pressure vessel in a weld construction and a flexible bladder with gas valve. The pressure vessel contains a fixed perforated disc, permitting a high flow rate through its large free cross-section. For use with chemically aggressive fluids, the shell can be manufactured in stainless steel. See section 2.1. for bladder materials.

3.4.2 Dimensions SB35HB



SB35HB

Permitted operating pressure 35 bar (PED)

Eff. gas	Weight	A	С	ØD	SW	Q ¹⁾	DN*
[l]	[kg]	[mm]	[mm]	[mm]	[mm]	[l/s]	
19.8	43	1081	62		26		
35	56	1591	03	219	30	20	50
50	69	2091	78		Ø 68 ²⁾		
	volume [I] 19.8 35 50	volume [I] [kg] 19.8 43 35 56 50 69	volume max. [l] max. [mm] 19.8 43 1081 35 56 1591	volume max. [kg] max. [mm] [mm] 19.8 43 1081 63 35 56 1591 63 50 69 2091 78	volume max. [kg] max. [mm] [mm] [mm] 19.8 43 1081 63 219 35 56 1591 78 219	volume max. [mm] [mm] [mm] [mm] [mm] [mm] 19.8 43 1081 63 219 36 55 56 1591 78 $\emptyset 68^{2)}$	volume max. [mm] [mm] [m] [m]

to EN 1092-1/11 / PN40, others on request
 ¹⁾ Q = max. flow rate of operating fluid

* available separately

¹⁾ When ordering, please state diameter of the smaller shell port Accumulator shell (item 1) not available as a spare part

NOTE 4

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAC 27

(HYDAC) INTERNATIONAL

Bladder Accumulators

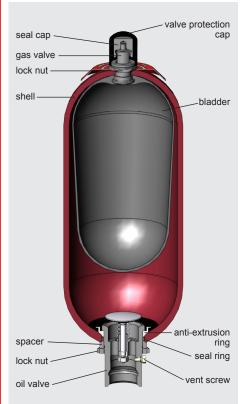
Standard

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.

The compressibility of a gas is utilised in hydraulic accumulators for storing fluids. HYDAC bladder accumulators are based on this principle, using nitrogen as the compressible medium.


A bladder accumulator consists of a fluid section and a gas section with the bladder acting as the gas-proof screen. The fluid around the bladder is connected to the hydraulic circuit so that the bladder accumulator draws in fluid when the pressure increases and the gas is compressed.

When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

HYDAC bladder accumulators can be used in a wide variety of applications, some of which are listed below:

- energy storage
- emergency operation
- force equilibrium
- leakage compensation
- volume compensation
- shock absorption
- vehicle suspension
- pulsation damping
- See catalogue section:
- Hydraulic Dampers No. 3.701

1.2. DESIGN

Design

 Standard bladder accumulator SB330/400/500/550

HYDAC standard bladder accumulators consist of the pressure vessel, the flexible bladder with gas valve and the hydraulic connection with check valve. The pressure vessels are seamless and manufactured from high tensile steel.

Bladder accumulator SB330N

The flow-optimised design of the standard oil valve enables the maximum possible operating fluid flow rate to increase to 25 l/s on this accumulator type.

 High flow bladder accumulator SB330H

HYDAC high flow bladder accumulators, type SB330H, are high performance accumulators with a flow rate of up to 30 l/s. The fluid port is enlarged to allow higher flow rates.

1.3. BLADDER MATERIAL

The bladder material must be selected in accordance with the particular operating medium or operating temperature, see section 2.1.

If discharge conditions are unfavourable (high p_2/p_0 pressure ratio, rapid discharge speed), the gas may cool to below the permitted temperature. This can cause cold cracking. The gas temperature can be calculated using the HYDAC Accumulator Simulation Program **ASP**.

1.4. CORROSION PROTECTION

For operation with chemically aggressive media, the accumulator shell can be supplied with corrosion protection, such as chemical nickel-plating. If this is insufficient, then stainless steel accumulators must be used.

1.5. INSTALLATION POSITION

HYDAC bladder accumulators can be installed vertically, horizontally and at a slant. When installing vertically or at a slant, the oil valve must be at the bottom. On certain applications listed below, particular positions are preferable:

- Energy storage:
- vertical,
- Pulsation damping:
- any position from horizontal to vertical,Maintaining constant pressure:
- any position from horizontal to vertical,Volume compensation:
- vertical.

If the installation position is horizontal or at a slant, the effective fluid volume and the maximum permitted flow rate of the operating fluid are reduced.

1.6. TYPE OF INSTALLATION

By using an appropriate adapter, HYDAC accumulators, up to size 1 I, can be installed directly inline.

For strong vibrations and volumes above 1 litre, we recommend the use of HYDAC support clamps or the HYDAC accumulator installation set.

See catalogue sections:

- Supports for Hydraulic Accumulators No. 3.502
- ACCUSET SB
- No. 3.503

2. TECHNICAL SPECIFICATIONS

2.1. EXPLANATORY NOTES

2.1.1 Operating pressure

see tables in Section 3. (may differ from nominal pressure for foreign test certificates)

2.1.2 Nominal volume

see tables in section 3.

2.1.3 Effective gas volume

see tables in Section 3. Based on nominal dimensions, this differs slightly from the nominal volume and must be used when calculating the effective fluid volume.

2.1.4 Effective fluid volume

Volume of fluid which is available between the operating pressures p_2 and p_1 .

2.1.5 Max. flow rate of the operating fluid

In order to achieve the max. flow rate given in the tables, the accumulator must be installed vertically. It must be noted that a residual fluid volume of approx. 10 % of the effective gas volume remains in the accumulator.

The maximum fluid flow rate was determined under specific conditions and is not applicable in all operating conditions.

2.1.6	Working	temperat	ure and	ope	ratir	ng fluid	
				-			

The permitted working temperature of a bladder accumulator is dependent on the application limits of the metal materials and the bladder. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materi	als	Material	Temperature range	Overview of the fluids ²⁾	
		code 1)		Resistant to	Not resistant to
NBR Acrylonitrile butadiene rubber		2	-15 °C + 80 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the 	Aromatic hydrocarbons Chlorinated hydrocarbons
		5	-50 °C + 50 °C	groups HFA, HFB, HFC ● Synthetic ester (HEES) ● Water	 (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R
		9	-30 °C + 80 °C	• Sea water	• Fuels
ECO	Ethylene oxide epichlorohydrin rubber	3	-30 °C +120 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the HFB group Synthetic ester (HEES) Water Sea water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R Flame-resistant fluids from the groups HFA and HFC Fuels
IIR	Butyl rubber	4	-50 °C +100 °C	 Hydraulic fluids of type HFD-R Flame-resistant fluids from the group HFC Water 	 Mineral oils and mineral greases Synthetic ester (HEES) Aliphatic, chlorinated and aromatic hydrocarbons Fuels
FKM	Fluorine rubber	6	-10 °C +150 °C	 Mineral oil (HL, HLP) Hydraulic fluids of type HFD, Synthetic ester (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Amines and ketones Ammonia Skydrol and HyJet IV Steam

¹⁾ see section 2.2. Model code, material code, accumulator bladder

²⁾ others available on request

2.1.7 Gas charging

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 µm. If other gases are to be used, please

contact us for advice.

2.1.8 Limits for gas pre-charge pressure

 $p_0 \le 0.9 \bullet p_1$ with a permitted pressure ratio of:

 $p_2 : p_0 \le 4 : 1$

- p₂ = max. operating pressure
- p_0^2 = pre-charge pressure

2.1.9 Certificate codes

Country	Certificate code (AKZ)
EU member states	U
Australia	F ¹⁾
Belarus	A6
Canada	S1 ¹⁾
China	A9
Hong Kong	A9
Iceland	U
Japan	Р
Korea (Republic)	A11
New Zealand	Т
Norway	U
Russia	A6
South Africa	S2
Switzerland	U
Turkey	U
Ukraine	A10
USA	S

1) = Registration required in the individual territories or provinces

others on request

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell. After the hydraulic line has been connected it must be completely vented.

Work on systems with hydraulic accumulators (repairs, connecting pressure gauges etc) must only be carried out once the pressure and the fluid have been released.

The operating instruction must be followed!

No. 3.201.BA

Note:

Application examples, accumulator sizing, instructions and extracts from approvals and transport regulations relating to hydraulic accumulators can be found in the following catalogue section:

 HYDAC Accumulator Technology No. 3.000

2.1.10 Gas-side connection

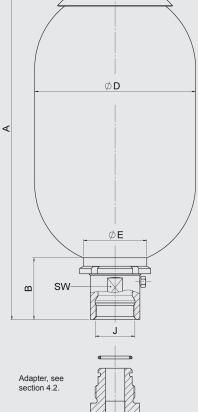
	sta	an	d	arc	

Series	Volume [I]	Gas valve type					
SB330 /	< 1	5/8-18UNF					
SB400	< 50	7/8-14UNF					
	≥ 50	M50x1.5 / 7/8-14UNF					

other pressure ranges on request.

2.2. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u>SB330 (H) - 32 A 1 / 112 U - 330 A 050</u>
Series	
Type code no details = standard	
H = high flow	
N = increased flow, standard oil valve A = shock absorber	e dimensions
$P = pulsation damper^{3}$	
B = bladder top-removable	
E = bladder with foam filling	
D = bladder integrity system L = light weight	
Combinations must be agreed with HY	/DAC.
Nominal volume [I]	
A = standard connection, thread with	ninternal seal face
F = flange connection	
C = valve mounting with screws on u	
E = sealing surfaces on front interface (e.g. on thread M50x1.5 – valve)	
G = male thread	
S = special connection, to customer	specification
	10)
$2 = hack_{-1} \ln version^{4}$	
3 = gas valve 7/8-14UNF with M8 in	ternal thread
4 = gas valve 7/8-14UNF with gas valve 5 = gas valve M50x1.5 in accumulat	alve connection 5/8-18UNF
6 = 7/8-14UNF gas valve	
7 = M28x1.5 gas valve	
8 = M16x1.5 gas valve (with M14x1.5 bore in gas valve)	
q = special gas value to customer s	pecification
Material code	
dependent on operating medium standard model = 112 for mineral oils	
others on request	
Fluid connection	
1 = carbon steel 2 = high tensile steel	
$3 = \text{stainless steel}^2$	
6 = low temperature steel	
Accumulator shell0 = plastic coated (internally)	
1 = carbon steel	
2 = chemically nickel-plated (interna	I coating)
4 = stainless steel ²⁾ 6 = low temperature steel	
Accumulator bladder 1)	
$2 = NBR^{5}$	
3 = ECO 4 = IIR	
$5 = NBR^{5}$	
6 = FKM 7 = other	
7 = other 9 = NBR ⁵⁾	
Certification code	
U = European Pressure Equipment [<u>Permitted operating pressure [bar]</u>	Directive (PED)
Connection, fluid side	
Thread, codes for fluid connections: A	, C, E, G
A = thread to ISO228 (BSP) B = thread to DIN13 or ISO965/1 (m	etric)
C = thread to ANSI B1.1 (UN2B se	
D = thread to ANSI B1.20.1 (NPT)	
S = special thread, to customer spec Flange, codes for fluid connection: F	ancauon
A = EN 1092-1 welding neck flange	
B = flange ASME B16.5	
C = SAE flange 3000 psi D = SAE flange 6000 psi	
S = special flange, to customer spec	ification
Pre-charge pressure p, [bar] at 20 °	C, must be stated clearly, if required!
¹⁾ when ordering a replacement bladder, state diameter of ²⁾ dependent on type and pressure range	the smaller shell port
 ³⁾ see catalogue section Hydraulic Dampers, No. 3.701 ⁴⁾ see catalogue section Hydraulic accumulators with bac 	k-up nitrogen bottles, No. 3.553
⁵⁾ observe temperate rangés, see section 2.1.	

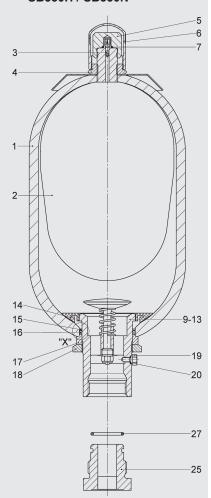

E 3.201.29/01.17

3. **DIMENSIONS AND SPARE PARTS**

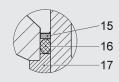
2 1

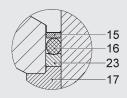
3.1.	DIMEN	SION	IS									
	Type of valve, fluid side	max. operating pressure (PED)			A max.	W	С	Ø D max.	J thread	ØE	SW	Q ¹
Nominal volume	/e, flui	ting pi	Eff. gas volume	rox.								
2	valv	era	N	app								
IINa	e of		gas	ght								
NoN	Typ	(PE	E#	Weight approx.								
[1]		[bar]	[1]	[kg]	[mm]	[mm]	[mm]	[mm]	ISO 228	[mm]	[mm]	[l/s
0.5		400	0.5	4	270	57	33.5	96	G 3/4	50	32	4
1		330	- 1	7	316	57		115	G 3/4	50	52	4
1		550	, '	10	343	67		123	G 1		45	6
2.5		330	2.4	11	528	64		115	G 1 1/4		50	10
2.0	Standard	550	2.5	14	550	67	-	123	G 1		45	6
4	otandara	330	3.7	15	412	65	56	170	G 1 1/4	67	50	10
		400								0.		
5		550	4.9	17	876	64	-	123	G 1		45	6
6		330	5.7	18	534	65		170	G 1 1/4		50	10
10 ²⁾		330	9.3	31	810				G 1 1/4			
	Standard		9.3	33	582	101			G 2	100	70	15
40	N	330		34	0.47	400	56	229	0.0.1/0	405	00	25
10	H	400	9	38	617	136	1	004	G 2 1/2	125	90	30
	Standard	400	9.3	41	578	101		234	G 2	100	70	15
	Standard	500	8.8	46	598		69	241				15
	Standard N	330		46	695	101		220	G 2	100	70	15 25
13	H	330	12	47	730	136	56	229	G 2 1/2	125	90	25 30
	Standard	400	-	40	695	101		234	G 2 1/2	100	70	15
	Standard	+00		+0				204	02	100	10	15
	N	330	18.4	49	895	101		229	G 2	100	70	25
20	н		17.5	62	930	136	56		G 2 1/2	125	90	30
		400	18.4	71	895			234		100	70	
	Standard	500	17	77	913	101	69	241	G 2	110	75	15
	Standard		22.6	72	1060	101			<u></u>	100	70	15
24	N	330	23.6	73	1060	101	56	229	G 2	100	70	25
	Н		24	76	1095	136			G 2 1/2	125	90	30
	Standard N	330	33.9	80 81	1410	101	56	229	G 2	100	70	15 25
32	Н		32.5	98	1445	136	00		G 2 1/2	125	90	30
	Standard	400	33.9	104	1410	101		234	G 2	100	70	15
		500	33.5	112	1423		69	241	<u> </u>	110	75	
	Standard			114	1933	101			G 2	100	70	15
-	N	330	47.5	115				229				25
50	H	400	-	128	1968	136	69		G 2 1/2	125	90	30
	Standard	400	40.0	137	1933	101		234	G 2	100	70	15
60		500	48.3	167	1010			241			75	
60			60	160	1210	-						
80 100			85 105	200 234	1460 1710	138		360				
130	Standard	330	105	234	2030	-	69		G 2 1/2	125	90	30
160			133	345	2030							
200			201	403	2059	137		410				
	ax. flow rate c	[1			<u> </u>		ļ	[[

DIMENSIONS υ



E 3.201.29/01.17


 $^{\rm 1)}$ Q = max. flow rate of the operating fluid under optimum conditions $^{\rm 2)}$ slimline version, for confined installation spaces


SB330/400/440/500/550 SB330H / SB330N

Detail "X" SB330/400 - 0.5 to 10 l

SB300/400/500 - 10 to 200 I and SB300H – 10 to 50 l SB550 – 1 to 5 l

Description	Item
Bladder assembly	
consisting of:	
Bladder	2
Gas valve insert*	3
Lock nut	2 3 4 5 6
Seal cap	5
Protective cap	6
O-ring	7
Seal kit	
consisting of:	
O-ring	7
Washer	15
O-ring	16
vent screw	19
Back-up ring	23
O-ring	27
Repair kit ¹⁾	
consisting of:	
Bladder assembly (see above)	
Seal kit (see above)	
Anti-extrusion ring	14
Oil valve assembly consisting of:	
Valve	9-13
Anti-extrusion ring	14
Washer	15
O-ring	16
Spacer	17
Lock nut	18
vent screw	19
Back-up ring	23

Item | SB330/400 NBR, carbon steel Standard gas valve

	-							
Volume [l]	Bladder assembly	Seal kit	Repair kit					
0.5	365263	353606	2128169 ²⁾					
1	237624	355000	2106261					
2.5	236171		2106200					
4	236046		2106204					
5	240917	353609	2106208					
6	2112097]	2112100					
10*	2127255		3117512					
10	236088		2106212					
13	376249]	2106216					
20	236089	353621	2106220					
24	376253	355621	2106224					
32	235335		2106228					
50	235290]	2106252					
60	3364274		3117513					
80	3364312]	3117514					
100	3127313	3102043 1)	3117515					
130	3201384	3102043 "	3117516					
160	3184769]	3117517					
200	3461300		3117558					
* alimina u	* alimling version for confined installation analogo							

slimline version for confined installation spaces ¹⁾ only for SB330
 ²⁾ only for SB400 others on request

When replacing seals and/or bladders, please read the Instructions for Assembly and Repair (No. 3.201.M).

* available separately

¹⁾ when ordering, please state diameter of the smaller shell port

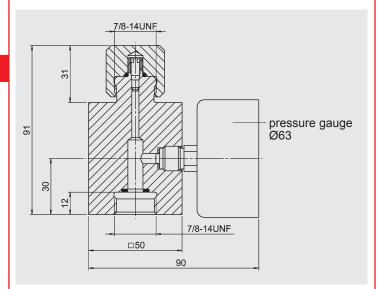
Accumulator shell (item 1) not available as a spare part Air bleed screw (item 19) for NBR/carbon steel: seal ring (item 20) included

Adapter (item 25) must be ordered as an accessory, see section 4.

4. ACCESSORIES FOR BLADDER ACCUMULATORS

4.1. ADAPTERS (GAS SIDE)

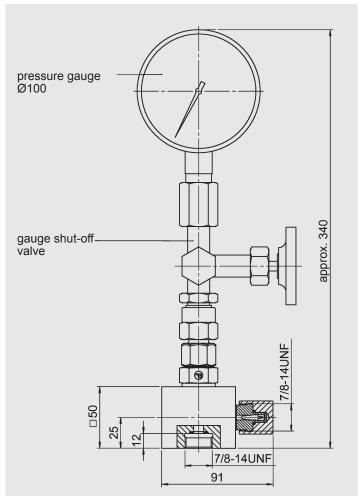
The adapters shown below are available for standard connections on bladder accumulators and must be specified separately in the order.


4.1.1 Adapter for safety equipment

Adapter for connecting safety equipment, such as bursting disc or temperature fuse, see brochure section:

• Safety Equipment for Hydraulic Accumulators No. 3.552

4.1.2 Pressure gauge model

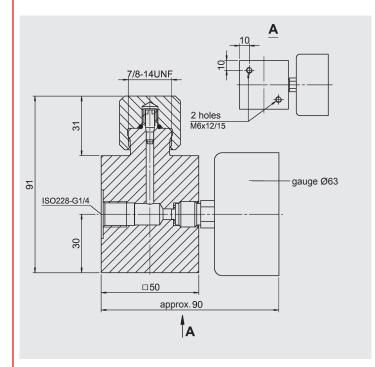

Gas-side connection on the bladder accumulator for permanent monitoring of the pre-charge pressure

Cauga	Drossuro daudo	Adaptar* assambly
Gauge	Pressure gauge	Adapter* assembly
indication range	Part no.	Part no.
-	-	366621
0 - 10 bar	614420	2108416
0 - 60 bar	606886	3093386
0 - 100 bar	606887	2104778
0 - 160 bar	606888	3032348
0 - 250 bar	606889	2100217
0 - 400 bar	606890	2102117

* p_{max} = 400 bar

4.1.3 **Pressure gauge model with shut-off valve** Gas side connection on the bladder accumulator for permanent monitoring of the pre-charge pressure with shut-off option.

	·	
Gauge indication	Pressure gauge	Adapter* assembly
range	Part no.	Part no.
-	-	2103381
0 - 25 bar	617928	3784725
0 - 60 bar	606771	2110059
0 - 100 bar	606772	3139314
0 - 160 bar	606773	3202970
0 - 250 bar	606774	3194154
0 - 400 bar	606775	2103226


* p_{max} = 400 bar

34 HYDAC

4.1.4 Remote monitoring of the pre-charge pressure


To monitor the pre-charge pressure in hydraulic accumulators remotely, gas side adapters with pressure gauge and mounting holes are available.


In order to connect these adapters directly to the hydraulic accumulator using appropriate lines, accumulator connectors are also available for connection at the top (see figure 1) or for side-connection (see figure 2).

Gauge	Pressure gauge	Adapter* assembly
indication range	Part no.	Part no.
-	-	3037666
0 - 10 bar	614420	3095818
0 - 60 bar	606886	3095819
0 - 100 bar	606887	3095820
0 - 160 bar	606888	3095821
0 - 250 bar	606889	3095822
0 - 400 bar	606890	3095823

* p_{max} = 400 bar

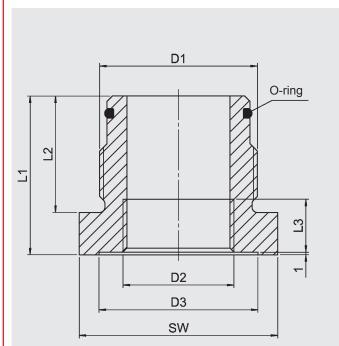

Figure 1

Figure 2

D1 Threaded	D2	Т	A	В	Adapter* complete	Figure
connection	[mm]	[mm]	[mm]	[mm]	Part no.	
ISO228- G 1/4	25		-	-	2109481	1
		14	25	40	2102042	2
ISO228- G 3/8	28		-	-	2109483	1
			25	40	366607	2
ISO228- G 1/2	0.4	16	-	-	2110636	1
	34	10	31	55	366608	2

4.2. ADAPTERS FOR STANDARD BLADDER ACCUMULATOR (FLUID SIZE)

To connect the bladder accumulator to threaded pipe fittings. These are available separately.

D1 Accum. conn.*	D2	D3	L1	L2	L3	SW	O- ring	Part no.
ISO228- BSP	ISO228- BSP	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	NBR/ Carbon steel
G 3/4	G 3/8	28	55	28	12	32	17x3	2104346
0 3/4	G 1/2	20	60	20	14	36	17.55	2104348
	G 3/8	28			12			2116345
G 1 1/4	G 1/2	34	50	37	14	46 65	30x3	2105232
G I 1/4	G 3/4	44			16			2104384
	G 1	50	67		18			2110124
	G 1/2	34			14			2104853
	G 3/4	44	60		16	65		2104849
G 2	G 1	50	00	44	18	05	48x3	2124831
	G 1 1/4	60			20			2107113
	G 1 1/2	68	80		22	70		2105905
G 2 1/2	G 1 1/4	60	66		20	80		2127406
	G 1 1/2	68	00	50	22		62x4	3243831
	G2	96	88		27	100		2113403

* others on request

5. NOTE

The information in this brochure relates to the operating conditions and applications described. For applications and operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: 0049 (0) 68 97 / 509 - 01 Fax: 0049 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAD INTERNATIONAL

High pressure

Bladder Accumulators

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.

The compressibility of a gas (nitrogen) is utilised in hydraulic accumulators for storing fluids.

HYDAC bladder accumulators are based on this principle.

A bladder accumulator consists of a fluid section and a gas section with the bladder acting as the gas-proof screen.

The fluid around the bladder is connected to the hydraulic circuit so that the bladder accumulator draws in fluid when the pressure increases and the gas is compressed. When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

HYDAC bladder accumulators can be used in a wide variety of applications and are also available in different pressure ranges, see catalogue sections:

- Bladder Accumulators Standard No. 3.201
- Bladder Accumulators Low Pressure No. 3.202
- HYDAC Accumulator Technology No. 3.000

1.2. DESIGN

The high pressure bladder accumulator consists of the pressure vessel, the flexible bladder with gas valve and the hydraulic connection with check valve.

1.2.1 Shell material

The forged pressure vessel is seamless and manufactured from high tensile chrome molybdenum steel.

1.2.2 Bladder material

The bladder material must be selected in accordance with the particular operating medium or operating temperature, see section 2.2.

If discharge conditions are unfavourable (high p_2/p_0 pressure ratio, rapid discharge speed), the gas may cool to below the permitted temperature. This can cause cold cracking. The gas temperature can be calculated using the HYDAC Accumulator Simulation Program **ASP**.

1.2.3 Corrosion protection

For operation with chemically aggressive media, the accumulator shell can be chemically nickel-plated internally or supplied with a special plastic coating.

For external corrosion protection the accumulator can be supplied with an epoxy resin finish especially for offshore applications.

1.3. INSTALLATION POSITION AND TYPE OF INSTALLATION

Information on secure installation positions and mounting elements can be found in the following catalogue sections:

- Bladder Accumulators Standard No. 3.201
- Supports for Hydraulic Accumulators No. 3.502
- ACCUSET SB No. 3.503

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell. After the hydraulic line has been connected it must be completely vented.

Work on systems with hydraulic accumulators (repairs, connecting pressure gauges etc.) must only be carried out once the fluid pressure has been released.

The operating instruction must be followed!

No. 3.201.BA

When replacing seals and/or bladders, please read the Instructions for Assembly and Repair (No. 3.201.M). Note:

Application examples, accumulator sizing and extracts from approvals regulations relating to hydraulic accumulators can be found in the following catalogue section:

 HYDAC Accumulator Technology No. 3.000

TECHNICAL SPECIFICATIONS 2.

2.1. MODEL CODE

Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u>SB690 – 32 A 1 / 312</u>	<u>U – 690</u> <u>D</u>
Series		
Nominal volume [I]		
Fluid port		
A = standard connection		
Gas-side connection 1 = standard design ¹⁾		
9 = special design (example.: 1/4" BSP)		
Material code		
Fluid connection 2 = high tensile steel 3 = stainless steel ²⁾ 6 = low temperature steel		
Accumulator shell 0 = plastic coated (internally) 1 = carbon steel 2 = chemically nickel-plated (internal coating) 6 = low temperature steel 8 = plastic coated (e.g. Duroplast) internally and externally		
Accumulator bladder $2 = NBR^{3}$ 3 = ECO 4 = IIR $5 = NBR^{3}$ 6 = FKM 7 = other $9 = NBR^{3}$		
Certification code U = European Pressure Equipment Directive (PED)		
Permitted operating pressure [bar]		
Connection A = thread to ISO228 (1/2" BSP) D = thread to ANSI B1.20.3 (1/2" NPTF)		

Required gas pre-charge pressure must be stated separately!

2.2. EXPLANATORY NOTES

2.2.1 Operating pressure

690 bar (10000 psi)

higher pressures on request

2.2.2 **Operating temperature and operating fluid**

The permitted working temperature of a bladder accumulator is dependent on the application limits of the metal materials and the bladder. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

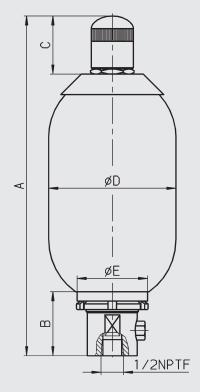
Materials		Material	Temperature range	Overview of the fluids ²⁾				
		code ¹⁾		Resistant to	Not resistant to			
	Acrylonitrile butadiene	2	-15 °C + 80 °C	Mineral oil (HL, HLP)	Aromatic hydrocarbons			
	rubber	-	-50 °C + 50 °C	 Flame-resistant fluids from the groups HFA, HFB, HFC 	 Chlorinated hydrocarbons (HFD-S) 			
		5	-50 °C + 50 °C	• Synthetic ester (HEES)	Amines and ketones			
				● Water	 Hydraulic fluids of type HFD-R 			
		9	-30 °C + 80 °C	• Sea water	• Fuels			
ECO	Ethylene oxide	3	-30 °C +120 °C	 Mineral oil (HL, HLP) 	Aromatic hydrocarbons			
	epichlorohydrin rubber			 Flame-resistant fluids from the HFB group 	 Chlorinated hydrocarbons (HFD-S) 			
				• Synthetic ester (HEES)	 Amines and ketones 			
				• Water	 Hydraulic fluids of type HFD-R 			
				• Sea water	 Flame-resistant fluids from the groups HFA and HFC 			
					• Fuels			
lir	Butyl rubber	4	-50 °C +100 °C	Hydraulic fluids of type HFD-R	Mineral oils and mineral greases			
				 Flame-resistant fluids from the 	 Synthetic ester (HEES) 			
				group HFC	 Aliphatic, chlorinated and 			
				• Water	aromatic hydrocarbons			
					• Fuels			
FKM	Fluorine rubber	6	-10 °C +150 °C	 Mineral oil (HL, HLP) 	 Amines and ketones 			
				 Hydraulic fluids of type HFD, 	 Ammonia 			
				 Synthetic ester (HEES) 	 Skydrol and HyJet IV 			
				• Fuels	● Steam			
				 Aromatic hydrocarbons 				
				 Inorganic acids 				

¹⁾ see section 2.1. model code, material code, accumulator bladder

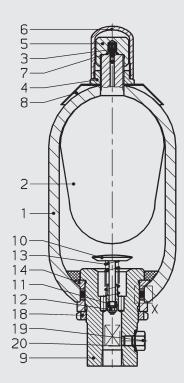
2) others available on request

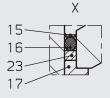
2.2.3 Gas charging

Hydraulic accumulators must only be charged with nitrogen.


Never use other gases. Risk of explosion!

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 μ m. If other gases are to be used, please contact HYDAC for advice.


HYDAC 39


3. DIMENSIONS AND SPARE PARTS

- 3.1. DRAWINGS
- 3.1.1 Dimensions

3.1.2 Spare parts

3.2. DIMENSIONS

Max. operating pressure: 690 bar (PED)

Nominal volume	Eff. gas voume	Weight	A max.	W	С	Ø D max.	ØE	SW
[1]	[I]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1	1	8.5	324					
2.5	2.5	13.5	531	61	58	122	67	45
5	4.9	23	860]				
10	9	54	522					
20	17	114	865]	0	050	110	75
32	33.5	186	1385	77	68	250	110	75
54	49.7	260	1900	1				

3.3. SPARE PARTS

3.3.1 Part numbers

NBR	
Description	Item
Bladder assembly	
consisting of:	
Bladder	2
Gas valve insert	3
Retaining nut	4
Seal cap	5
Protective cap	6
O-ring	7
Seal kit	
consisting of:	
O-ring	7
Washer	15
O-ring	16
Bleed screw	19
Support ring	23
Repair kit	
consisting of:	
Seal kit (see above)	
Bladder assembly (see above)	
Anti-extrusion ring	14
Oil valve assembly	
consisting of:	
Valve (items 9-13)	9
Anti-extrusion ring	14
Washer	15
O-ring	16
Spacer	17
Lock nut	18
Bleed screw	19
Support ring	23
Accumulator shell (item 1) not available as a spare part	

Accumulator shell (item 1) not available as a spare part

Nominal volume	Seal kit	Bladder assembly	Repair kit	Anti- extrusion ring
[1]	Part no.	Part no.	Part no.	Part no.
1		3010110	3182617	
2.5	3182615	3211568	3201771	293262
5		3211569	3201772	
10		3120931	4102462	
20	3182616	3211592	3211574	3028455
32	3102010	3211571	3211585	3026455
54		3116598	3211586	

4. NOTE

The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar; Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

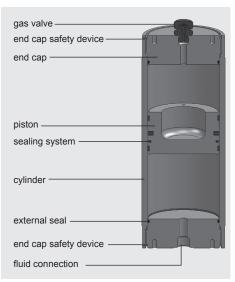
HYDAC INTERNATIONAL

Standard

Piston Accumulators

1. DESCRIPTION

1.1. FUNCTION


Fluids are practically incompressible and cannot therefore store pressure energy. The compressibility of a gas (nitrogen) is utilised in hydraulic accumulators for storing fluids. HYDAC piston accumulators are based on this principle.

A piston accumulator consists of a fluid section and a gas section with the piston acting as the gas-tight separation element. The gas section is pre-charged with nitrogen.

The fluid section is connected to the hydraulic circuit so that the piston accumulator draws in fluid when the pressure increases and the gas is compressed.

When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

1.2. DESIGN

HYDAC piston accumulators consist of:

- a cylinder with very finely machined internal surface.
- end caps on the gas side and the oil side. Sealed with O-rings.
- a floating steel or aluminium piston which can easily be accelerated due to its low weight.
- a sealing system adapted to the particular application. The piston floats on two guide rings which effectively prevent metal-to-metal contact between the piston and the accumulator wall.

For use with certain aggressive or corrosive fluids, the parts coming into contact with the fluid can be nickelplated for protection, or made entirely from corrosion-resistant material. Suitable materials are also available for low temperature applications.

1.3. SEALING SYSTEMS

Precise information about the intended operating conditions is required in order to select the most appropriate sealing system for the application. Important criteria for this selection are, for example:

- Design pressure,
- Effective pressure differential,
- Switching frequency or cycles,
- Temperature fluctuation,
- Operating fluid,
- Cleanliness of fluid (micron rating of filter),
- Maintenance requirements.

The sealing systems differ according to the type of piston used, each of which has its own type and arrangement of seals. Various elastomers are available as sealing material, depending on the operating conditions – see section 1.7.5.

Design	A	Application	Contamination level of fluid	Comment
		 For general accumulator operation without special requirements Application limitations: 	optimised for applications with a high level of contamination	
	n	nax. piston velocity: 0.5 m/s		
		Low-friction design		
		For high piston speeds		
		 Slow movements without stick-slip effect 		
	A	Application limitations: nax. piston velocity: 3.5 m/s		
		Low-friction design	-	1 guide ring for pistons
	-	 Simple-to-fit seals 		with $\emptyset \le 150 \text{ mm}$
		 Slow movements without stick-slip effect 	<u>Filtration:</u> NAS 1638 - Class 6 ISO 4406 - Class 17/15/12	2 guide rings for pistons with $\emptyset \ge 180 \text{ mm}$
		Application limitations: nax. piston velocity: 0.8 m/s		
		Low-friction design with emergency safety features		
		Slow movements without stick-slip effect		
		Very low oil transfer to the gas side		
	A	Application limitations:		
	n	nax. piston velocity: 5 m/s		

E 3.301.17/01.17

1.4. INSTALLATION POSITION

HYDAC piston accumulators operate in any position.

Vertical installation is preferable with the gas side at the top, to prevent contaminant particles from the fluid settling on the piston seals. For accumulators with certain piston position indicators, vertical installation is essential (see 1.7.). Piston accumulators with a piston diameter ≥ 355 mm must only be installed vertically.

1.5. TYPE OF INSTALLATION

For strong vibrations and volumes above 1 litre, we recommend the use of two HYDAC accumulator supports, or more as appropriate, ideally in the cover area. See catalogue section:

- Supports for Hydraulic Accumulators No. 3.502
- 1.6. ADVANTAGES OF HYDAC PISTON ACCUMULATORS
- complete range to over 3300 litres nominal volume,
- high ratios possible between pre-charge pressure and max. working pressure,
- economic solution using back-up gas bottles for low pressure differentials,
- high flow rates possible; limitation: max. piston velocity,
- power savings,
- high level of efficiency of the hydraulic installation,
- no sudden discharge when seals are worn,

• requires little space,

monitoring of the volume across the entire piston stroke or electrical limit switch.

Further advantages of using the low-friction sealing system:

- minimum friction,
- also suitable for low pressure differentials,
- no start-up friction,
- no stick-slip,
- low noise, no vibration,
- high piston velocity
- up to 5 m/s for piston type 4,improved accumulator efficiency,
- good life expectancy of seals because of low wear,
- suitable for large temperature fluctuations,
- low maintenance requirement.

1.7. TECHNICAL REQUIREMENTS

HYDAC piston accumulators are suitable for high flow rates. With the largest piston accumulator diameter made to date of 800 mm, a flow rate of 1000 l/s can be achieved at a piston velocity of 2 m/s.

1.7.1 **Effect of sealing friction** The permitted piston velocity depends on the sealing friction.

Higher piston velocities are possible where there is less sealing friction.

HYDAC piston accumulators of piston design type 2 allow velocities of up to 3.5 m/s.

1.7.2 Permitted velocities

Gas velocity

The flow velocities in the gas connection and pipe system should be limited to 30 m/s when using piston accumulators of the back-up type. Gas velocities of over 50 m/s should be avoided at all costs.

Oil velocity

In order to limit the pressure losses when the operating fluid is displaced, the flow velocity should not exceed 10 m/s in the fitting cross-section.

1.7.3 Function tests and fatigue tests

Function tests and fatigue tests are carried out to ensure continuous improvement of our piston accumulators.

By subjecting the accumulators to endurance tests under realistic as well as extreme working conditions, important data can be obtained about the longterm behaviour of the components. In the case of piston accumulators, important information on gas-tightness and the service life of seals is gained from such tests.

Vital data for use in accumulator sizing is gained by altering the working pressure and switching cycles.

1.7.4 Gas charging

Hydraulic accumulators must only be charged with nitrogen. Never use other gases.

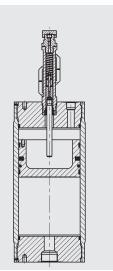
Risk of explosion!

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 $\mu m.$

If other gases are to be used, please contact us for advice.

1.7.5 Working temperature and operating fluid

The permitted working temperature of a piston accumulator is dependent on the application limits of the metal materials and the piston seal. Outside these temperature ranges, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:


Motoria	Materials Material Temperature range			Overview of the fluids ²)					
materia	115		Temperature range						
		code 1)		Resistant to	Not resistant to				
NBR	Acrylonitrile	2	-20 °C + 80 °C	 Mineral oil (HL, HLP) 	 Aromatic hydrocarbons 				
	butadiene rubber			 Flame-resistant fluids from the groups HFA, HFB, HFC 	 Chlorinated hydrocarbons (HFD-S) 				
		5	-40 °C + 80 °C	 Synthetic ester (HEES) 	 Amines and ketones 				
		5	-40 C + 60 C	• Water	 Hydraulic fluids of type HFD-R 				
				 Sea water 	• Fuels				
PUR	Polyurethane	8	Standard application	 Mineral oil (HL, HLP) 	 Water and water-glycol mixture 				
			-30 °C + 80 °C	 Flame-resistant fluids from the 	HFC				
			Special application	HFA group	alkalis				
			-40 °C +100 °C		● acids				
FKM	Fluorine rubber	6	-15 °C +160 °C	 Mineral oil (HL, HLP) 	 Amines and ketones 				
				 Hydraulic fluids of type HFD, 	Ammonia				
				• Synthetic ester (HEES)	 Skydrol and HyJet IV 				
				• Fuels	• Steam				
				 Aromatic hydrocarbons 					
				,					
				 Inorganic acids 					

¹⁾ see section 2.2. model code, material code and piston code, material of seals incl. piston

²⁾ others available on request

1.8. PISTON POSITION INDICATORS 1.8.1 Electrical

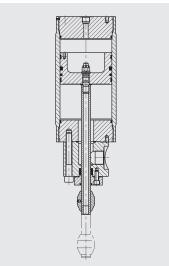
limit switch

The electrical limit switch usually monitors the max. charged condition of the piston accumulator.

It can, however, also permit control functions of the attached hydraulics to be carried out over a certain stroke length.

The limit switch consists of the switching rod with a permanent solenoid which is not attached to the the piston and can only achieve a limited stroke, and an anti-magnetic housing and two or more switches.

These switches can be normally closed or normally open or bistable. An N/C or N/O and a bistable switch cannot be fitted simultaneously to a limit switch. Our standard limit switch is fitted with a N/C and a N/O switch.

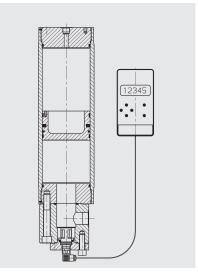

In another version, switching is carried out by inductive proximity switches.

The switch is reset by a spring or the force of gravity.

Vertical installation is preferable, due to the friction and possible wear in the rod guide. For limit switches with a stroke of >200 mm, vertical mounting with the gas side at the top is essential.

The maximum piston velocity must not exceed 0.5 m/s over the stroke range of the limit switch.

1.8.2 **Protruding** piston rod


The protruding piston rod permits the position of the piston to be monitored over the whole stroke. It consists of the piston rod, which is fixed to the piston and sealed in, and what is known as the trip cam, which actuates the limit switches.

The position of the piston can be monitored at any point using the trip cam. This facility is used mainly to switch the pump on and off.

Normally the piston rod protrudes from the accumulator on the fluid side to avoid possible points of leakage on the gas side. On the protruding piston rod version, the hydraulic connection will be on the side if the size of the end cap does not permit otherwise.

The protruding piston rod functions in any mounting position. There must however be sufficient space available for the protruding piston rod to move in and out. The maximum piston velocity should not exceed 0.5 m/s.

1.8.3 Ultrasonic distance measurement

The ultrasonic measurement system uses ultrasonic measurement to determine the position of the piston in the accumulator.

It is only possible to take the measurements from the fluid side because a continuous sound carrier medium is required for ultrasound. In order to eliminate false readings, the fluid must be as free of air bubbles as possible. The piston should be mounted so that no air can collect under the sensor.

The measurement data is evaluated by a microprocessor and is converted into a continuous measurement signal. It is possible to pick up interim measurement results to switch system parts, e.g. to turn the pump on and off.

The most important features of the system are:

- Protection class
- IP65 according to DIN 40050
- LCD display
- Outputs
 - 5 floating relay change-over switches (with 125 V, 1A rating), of which 1 is error output and 4 are user-adjustable switching
 - thresholds between 0 and 100 % - 4-20 mA

The maximum pressure for the sensor must not exceed 350 bar.

- Measuring frequency: 15 Hz
- Signal: no control signal
- max. measuring section: 5 m

1.8.4 Cable tension measurement system

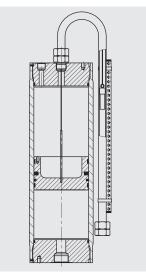
Using the cable tension measurement system, the position of the piston can be determined by means of a cable which is fixed to the piston.

The cable is attached to a roller which is tensioned by a spring.

This roller alters an electrical resistance via an attached rotary potentiometer during the piston movement. This resistance is converted by a transformer into an electrical signal so that it can be processed directly by a PLC system. The signal is supplied through the end cap via a pressure-tight cable gland. Alternatively various digital display units and measuring transducers can be connected.

- Digital display unit: Supply voltage 230 V AC (or 24 V DC)
 4-channel limit comparator
 4 optical coupler outputs
 2 relay contact outputs
 1 RS 232 interface (optionally with analogue output)
- 4 20 mA)
 Measuring transducer: Supply voltage 24 V DC
- Analogue output 4 20 mA

The maximum pressure must not exceed 350 bar. The piston acceleration is limited to certain values according to measurement system forces, approx. 7 to 30 g, and the piston velocity is limited to max. 0.5 m/s. The measuring system is not suitable for intensive load reversal or rapid fluctuations in volume.

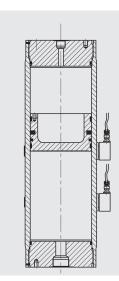

For such loads, please contact the technical department at our Head Office or your local HYDAC agent. The preferred installation position is with the gas side at the top.

The cable tension measurement system can only be fitted to the gas side of the piston accumulator.

Note:

For the potentiometer in the cable tension measurement system, as little current as possible should flow over the sliding contact. Input currents > 0.1 nA lead to a reduced service life and are therefore not recommended. The digital display unit and the measuring transducer have been designed accordingly. 1.8.5 Magnetic flapper indication

1.8.6 Piston position switch



With magnetic flapper indication, the position of a piston can be determined by the colour indicated by a set of magnetic flaps which are visible externally.

A non-magnetic tube is fitted to the piston accumulator containing a cable, one end of which is fastened to the gas side of the piston, and the other end is attached to a magnet. Along the length of the piston accumulator a housing is also fitted which contains red/white magnetic flaps. As the magnet moves up or down its tube, the flaps turn to their opposite colour to indicate the piston's position.

When the piston moves towards the gas side, the indicator moves in the direction of the oil side. In addition, reed switches can be fitted to switch system parts or measurement scales can be fitted to the tube.

The maximum piston velocity must not exceed 0.5 m/s. No more than 5 cycles per day on average should be carried out. Piston accumulators with magnetic flapper indication must only be installed vertically, with the gas side at the top.

With the piston position switch it is possible to detect the piston position in a piston accumulator using ultrasonic sound.

The indicator can be retrofitted using a clamp. No other modification is required. It is possible to fit without disrupting the operation.

The piston position switch detects the change-over from oil to piston at which point the signal is switched off. This is the case if the piston is in the sound path or has passed it.

There are three different versions available:

- Standard version for hydraulic fluid with a viscosity of up to 100 cSt.
- Special version for hydraulic fluid with a viscosity of 500 cSt.
- Special version for use in explosion protected areas.

Supply voltage 18 ... 30 V DC Switching output: NPN (or PNP)

2. TECHNICAL SPECIFICATIONS

2.1. EXPLANATORY NOTES

2.1.1 **Nominal volume [I]** see table at section 3.1.

2.1.2 Eff. gas volume V_0 [I] These differ slightly from the nominal volume and form the basis of the calculations of the effective fluid volume.

See section 3.1.1.

2.1.3 Effective volume ΔV [I] The volume (on the fluid side) between the working pressure p_2 and p_1 .

2.1.4 Permitted operating temperature (fluid) -10 °C ... +80 °C 263 K ... 353 K standard material, others on request

2.1.5 Certificate codes

rtificate de <z)< th=""></z)<>
)
1)
1
0

territories or provinces.

others on request

2.2. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC.

Νοι	minal volume [I]
Mai	terial and nisten code
Pis	ton design (see section 1.3.)
	ton material
1 2	
3	
<u>Ma</u> t 1	= carbon steel
2	= carbon steel with surface protection
3 6	= stainless steel ¹⁾ = carbon steel (low temperature)
	terial of seals incl. piston seals
2 5	= NBR ² / PTFE compound = NBR ² / PTFE compound
6 8	= FKM / PTFE compound = NBR ² / PUR
9	
Сег	rtification code
U	
Per	mitted operating pressure [bar]
	id connection
Sta	ndard or specification of the type of connection (see Tables 2 + 3) e of connection (see Tables 4 + 5)
5120	
Gas Typ	e of connection (see Table 1)
Sta	ndard or specification of the type of connection (see Tables 2 + 3)
	letter required with connection type V) e of connection (see Tables 4; 5 + 6)
04	ton diameter = 40 mm 20 = 200 mm
	= 50 mm 25 = 250 mm = 60 mm 31 = 310 mm
08	= 80 mm 35 = 355 mm
	= 100 mm 49 = 490 mm = 125 mm 54 = 540 mm
15	= 150 mm 61 = 610 mm = 180 mm
10	- 180 11111
<u>Su</u> j A	eplementary equipment* = electrical limit switch – 35 mm stroke
В	 electrical limit switch – 200 mm stroke
C K	= electrical limit switch – 500 mm stroke = protruding piston rod
M S	 magnetic flapper indication cable tension measurement system
U	= ultrasonic measurement system
E P	= special switch fixed or adjustable = magnetic piston
	. = piston position switch
W	(e.g. UP2 = 2 position switches, UPEX = ATEX version) = limit switch with linear distance sensor
Saf	ety equipment*
1	 burst disc (please give nominal pressure and temperature)
2 3	= gas safety valve = temperature fuse

²⁾ observe temperate ranges, see section 1.7.

Code letter	Description
A	Threaded connection (female)
В	Threaded connection (male)
F	Flange connection
H	Protruding flange
K, S	Combination connection / Special connection
V	Gas valve type
-	readed connection: standard or specification
Code letter	Description
A	Thread to ISO 228 (BSP)
В	Thread to DIN 13 or ISO 965/1 (metric)
С	Thread to ANSI B1.1 (UN2B, seal SAE J 514)
D	Thread to ANSI B1.20.3 (NPTF)
Table 3, Flan Code letter	ange connection: standard or specification Description
A	Flanges to DIN standards (pressure range + standard)
В	Flanges to ANSI B 16.5
С	SAE flange 3000 psi
D	SAE flange 6000 psi
E	High pressure block flange (Bosch-Rexroth) PN320

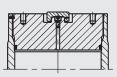
Table 4, Threaded model connection sizes

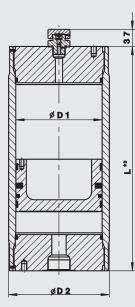
Type. Table 2	Code, size										
	A	В	С	D	E	F	G	Н	J	K	L
A	G 1/8	G 1/4	G 3/8	G 1/2	G 3/4	G 1	G 1 1/4	G 1 1/2	G 2	G 2 1/2	G 3
В	M10x1	M12x1.5	M14x1.5	M16x1.5	M18x1.5	M22x1.5	M27x2	M33x2	M42x2	M48x2	M60x2
С	5/16- 24UNF	3/8- 24UNF	7/16- 20UNF	1/2- 20UNF	9/16- 18UNF	3/4- 16UNF	7/8- 14UNF	1 1/16- 12UNF	1 3/16- 12UNF	1 5/16- 12UNF	1 5/8- 12UNF
D	1/16- NPTF	1/8- NPTF	1/4- NPTF	3/8- NPTF	1/2- NPTF	3/4- NPTF	1-11 1/2 NPTF	1 1/4-11 1/2 NPTF	11/2-11 1/2 NPTF	2-11 1/2 NPTF	2 1/2 - NPTF

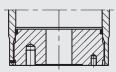
Table 5, Flange model connection sizes

Type. Table 2	Code, size										
	A	В	С	D	E	F	G	Н	J	К	L
A	DN15	DN25	DN40	DN50	DN65	DN80	DN100	DN125	DN150	DN200	-
В	1/2" - 1500 psi	1" - 1500 psi	1 1/2" - 1500 psi	2" - 1500 psi	2 1/2" - 1500 psi	3" - 1500 psi	1/2" - 2500 psi	1" - 2500 psi	1 1/2" - 2500 psi	2" - 2500 psi	2 1/2" - 2500 psi
С	1/2"	3/4" 1"	1 1/4"	1 1/0"	2"	2 1/2"	3"	3 1/2"	4"	5"	
D	1/2		1 1/4	1 1/2	2	_	-	-	-	_	
E	DN32	DN40	DN50	DN65	DN80	DN100	DN125	DN150	_	DN25	_
C D E F	-1/2" -DN32			1 1/4" DN65	1 1/2" DN80	2" DN100	2 1/2"		-	_	· · ·

Table 6, Gas valve models


Code letter	Description
A	Gas valve G 3/4 male, with M28x1.5/M8
В	Gas valve end connection M28x1.5/M8
С	Gas valve 1/2"-20 UNF, male, with M16x2 (ISO 10945)
D	Gas valve M14x1.5 male with external M16x1.5 (Minimess)
E	Gas valve G 3/4 male with 7/8-14 UNF-VG8
F	Gas valve end connection M42x1.5/M12


Note: Application examples, accumulator dimensioning and extracts from approvals regulations relating to hydraulic accumulators can be found in the following catalogue section:


E 3.301.17/01.17

3. DIMENSIONS

3.1. PISTON ACCUMULATORS

Nominal volume V	Series	Perm. operating	Ø D1	Ø D2	Length calculation ¹⁾ L = a + (b • V)		Weight ²⁾ min max.
min max.		pressure (PED)			а	b	
[1]		[bar]	[mm]	[mm]	[mm]	[mm/l]	[kg]
0.2- 5	SK350	350	60	80	126	353.7	6 – 35
0.5- 10	SK350	350	80	100	157	198.9	11 – 48
0.5- 15	SK350	350	100	125	184	127.3	19 – 85
1 – 50	SK350	350	125	160	185	81.5	32 – 280
2.5- 70	SK210	210	150	180	210	EC C	45 – 280
2.5- 70	SK350	350	150	160	234	56.6	49 – 283
2.5 100	SK210	210	180	210	262	39.3	70 – 346
2.5- 100	SK350	350		220	262		79 – 458
2.5- 200	SK210	210	200	235	290	31.8	86 - 452
2.5- 200	SK350	350	200	235	290	31.0	00 - 402
10 - 200	SK210	210	250	286	400	20.4	170 – 631
10 – 200	SK350	350	250	300	408	20.4	200 - 860
25 - 400	SK350	350	310	350	462	13.2	390 – 1110
05 750	SK210	210	255	404	504	10.1	468 – 1338
25 – 750	SK350	350	355	434	534	10.1	590 – 2048
200 4200	SK210	210	400	E70	700	5.0	1700 0100
200 –1300	SK350	350	490	570	700	5.3	1760 – 3180
300 -3300	SK210	210	610	691	856	3.42	2500 - 11000
300 - 3300	SK350	350	010	710	950	3.42	2500 - 11000

¹⁾ The lengths calculated are usually rounded up or down in 5 mm increments ²⁾ Intermediate weights can be calculated approximately depending on the length/diameter required

Other pressures, volumes, approvals etc possible on request.

3.1.1 Effective gas volume V_0 The gas volume V is larger than the nominal volume given in the tables in section 3.1. by the amount shown below.

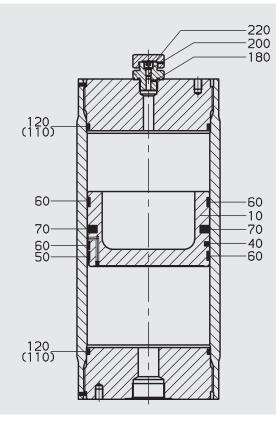
Piston Ø D1	Piston design type			
	1	2	3	4
[mm]		Δ	[1]	
60	-	0.040	-	0.040
80	-	0.044	0.081	0.044
100	0.062	0.062	0.270	0.062
125	-	0.169	0.546	0.169
150	-	0.653	0.824	0.653
180	1.213	1.213	1.286	1.213
200	-	0.999	1.601	0.999
250	3.034	3.034	2.617	3.034
310	-	6.221	_	6.221
355	4.514	4.514	_	4.514
490	-	12.705	_	12.705

3	2. PISTON ACCUMULATOR	Nominal	Series	Cortifi	cation cod							
0.	WITH ELECTRICAL	volume ¹⁾	Selles	Ø D1			Electr	ical lim	it switc	ch stroke		
	LIMIT SWITCH				5	3)	A = 35			00 mm		00 mm
					Gas-side connection ²⁾	Fluid-side connection ³⁾	N		N		N	
					s-sic	d-si nec		addit. weight		addit. weight		addit. weight
	connection for charging and testing unit FPU-1				Gas	Flui		" ≥		[™] ≥		[™] ≥
-		[1]		[mm]	ISO228		[mm]	[kg]	[mm]	[kg]	[mm]	[kg]
		0.2						1. 01		1. 51		1 01
		0.5	SK350	60	-	-						
		1							it switcl	h		
	z z	0.5					not po	ssible				
		1	SK350	80	-	-						
		<u>2</u> 2.5										
		<u> </u>	SK350	100	G 3/4	G 1	209	2.55	439	4.85	679	7.15
		7.5			lateral		203	2.00	-55	7.00	015	7.15
		2										
		5	SK350	125	G 3/4 lateral	G 1	209	2.55	439	4.85	679	7.15
		15			laterai							
		6	-									
		20	SK350	150	G 3/4	G 1 1/2	209	2.6	439	4.9	679	7.2
		40	SK210									
		10	SK350	-								
			SK210	-								
		20	SK350	180	G 1	G 1 1/2	209	2.6	439	4.9	679	7.2
		50	SK210]								
			SK350									
		20										
		40	SK350	200	G1	G 1 1/2	209	2.65	439	4.95	679	7.25
		100	SK210									
		50	SK350									
			SK210									
		80	SK350	250	G 1 1/4	G 2	209	2.8	439	5.1	679	7.4
F	· · · · · · · · · · · · · · · · · · ·	120	SK210									
S			SK350									
M		120		0.4.0		NUA/50	000		400	5.0	070	
S		<u> 150 </u> 200	SK350	310	G 1 1/4	NW50	209	2.9	439	5.2	679	7.5
			SK210									
		130	SK350	-								
		400	SK210	255	0.4.4/0				400		070	7.4
		180	SK350	355	G 1 1/2	NW50	209	2.8	439	5.1	679	7.4
		250	SK210									
			SK350									
4	m1 = Motor	200		400			000		400	50	070	7.0
	c1 = Motor contactor	400	SK350	490	G 2	-	209	3	439	5.3	679	7.6
1	e3 = Control cut-out	600 ¹⁾ volume detai	 s are example	es, for oth	l Iers see sec	tion 3.1				ļ		<u> </u>
	1ö = Solenoid switch – N/C 1s = Solenoid switch – N/O	²⁾ standard con ³⁾ others on rec	nection for ba	ck-up typ	e, others on	request						
		for further infor		ection 1.7	7 .							

²⁾ standard connection for back-up type, others on request ³⁾ others on request for further information, see section 1.7.

Table 7, Supplementary seal

Piston Ø [mm]	Туре	NBR Part no.	FKM Part no.	
	1			
all	2	601078	601109	
diameters	3			
	4	on request		


Note:

The supplementary seal must be ordered in addition to the seal kit (section 4.).

E 3.301.17/01.17

SPARE PARTS 4.

4.1. PISTON ACCUMULATORS

Piston assembly (Table 8)

Piston Ø	Piston	NBR	FPM	PUR
~ [mm]	Pis	Part no.	Part no.	Part no.
	1	-	-	_
60	2	3183495	-	_
	3	-	-	3009372
	1	-	-	_
80	2	3183496	3183497	_
	3	-	-	2119931
	1	3128922	3128926	_
100	2	3175476	3183117	_
	3	-	-	2115547
	1	-	-	_
125	2	3016232	3016253	_
	3	-	-	3016150
	1	-	-	_
150	2	3016228	3016229	_
	3	-	-	3016231
	1	3141888	3182493	_
180	2	2118451	2112535	_
	3	-	-	3046277
	1	-	_	_
200	2	3110811	3016215	_
	3	-	-	3016218
	1	3128924	3128938	_
250	2	353980	353981	_
	3	-	-	3016171
	1	-	-	_
310	2	3016195	3016197	_
	3	-	-	_
	1	3128925	3128939	_
355	2	356382	354079	_
	3	-	-	_
	1	-	-	_
490	2	3128989	3128990	_
	3	-	-	_

Seal kit assembly (Table 9)

Piston Ø	Piston	NBR	FPM	PUR
[mm]	Ë	Part no.	Part no.	Part no.
	1	-	-	-
60	2	3090507	-	-
	3	-	_	3016210
	1	-	-	-
80	2	3041573	3015745	-
	3	-	-	3013230
	1	3128940	3128944	-
100	2	363268	363269	-
	3	-	-	2123414
	1	-	-	-
125	2	3116665	3016234	-
	3	-	-	2128104
150	1	-	_	-
	2	3016235	3016237	-
	3	-	_	3007546
	1	3128941	3128945	-
180	2	363270	363271	-
	3	_	_	2123415
	1	-	-	-
200	2	3110810	3016242	-
	3	-	_	3113127
	1	3128942	3128946	-
250	2	363266	363267	-
	3	-	_	3016213
	1	-	-	-
310	2	3016200	3016201	-
	3	-	-	-
	1	3128943	3128947	-
355	2	363272	363273	-
	3	-	-	3726888
	1	-	-	-
490	2	3104100	3128991	_
	3	-	-	3894300

4.1.1 Piston type 1

Designation	Qty.	Item
Piston assembly ²⁾ consisting of:		
Piston	1	10
	1	50
Seal ring Guide ring	2	60
	1	70
Centre seal		70
Seal kit assembly consisting of:		
Seal ring	1	50
Guide ring	2	60
Centre seal	1	70
(Support ring)	(2)	(110)
O-ring	2	120
O-ring	1	180
Seal ring	1	200
O-ring	1	220
4.1.2 Piston type 2		
Piston assembly ²⁾ consisting of:		
Piston	1	10
Seal ring	1	40
Guide ring	2	60
Centre seal	1	70
Seal kit assembly consisting of:		
Seal ring	1	40
Guide ring	2	60
Centre seal	1	70
(Support ring)	(2)	(110)
O-ring	2	120
O-ring	1	180
Seal ring	1	200
O-ring	1	200
		220
4.1.3 Piston type 3 Piston assembly ²⁾		
consisting of:		
	1	10
Piston		
Piston Guide ring ¹⁾	1/2	60
		60 70
Guide ring 1)	1/2	
Guide ring ¹⁾ Seal ring Seal kit assembly	1/2	
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of:	1/2 1	70
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of: Guide ring ¹⁾ Seal ring	1/2 1 1/2 1/2 1	70 60 70
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of: Guide ring ¹⁾ Seal ring (Support ring)	1/2 1 1/2	70 60 70 (110)
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of: Guide ring ¹⁾ Seal ring (Support ring) O-ring	1/2 1 1/2 1 (2) 2	70 60 70 (110) 120
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of: Guide ring ¹⁾ Seal ring (Support ring) O-ring O-ring	1/2 1 1/2 1 (2) 2 1	70 60 70 (110) 120 180
Guide ring ¹⁾ Seal ring Seal kit assembly consisting of: Guide ring ¹⁾ Seal ring (Support ring) O-ring	1/2 1 1/2 1 (2) 2	70 60 70 (110) 120

²⁾ Items (110,) 120, 180, 200 and 220 are supplied loose. Pressure resistant parts cannot be supplied as spares.

Spare parts for piston type 4 are available on request.

4.2. ASSEMBLY INSTRUCTIONS

Before assembling or disassembling a piston accumulator or piston accumulator station, the system must always be depressurised.

The gas and the fluid side must be depressurised and the gas valve unscrewed or opened before the accumulator is disassembled. Before the end caps are removed, ensure that the piston is moving freely. This may be achieved by using a rod. Only authorised persons should repair piston accumulators where the piston is jammed.

Piston accumulators with internal diameters up to 250 mm are fitted with a securing pin. This pin is to prevent the end cap being removed incorrectly. It must be taken out before removing the

end cap. There may be a danger to life due to stray

components. All work must only be carried out by suitably trained specialist staff. On no account must any welding, soldering or mechanical work be carried out on the

accumulator shell. The operating instruction must be followed!

No. 3.301.BA

Assembly sleeves for piston accumulators (Table 11)

Piston Ø [mm]	to fit the seals
60	297430
80	244991
100	352198
125	370734
150	2124157
180	3713269
200	3644938
250	3715658
310	3721000
355	3728790
490	3114220

Piston Ø [mm]	to install the piston
60	2120188
80	359614
100	290056 (M105x2) 2117672 (M110x3)
125	2128223
150	2124161 (SK210) 3680195 (SK350)
180	290049 (M186x3) 3028679 (M190x4)
200	3600690
250	3026807
310	3027403
355	3389677
490	3440695

When replacing seals and/or pistons, please read the Instructions for Assembly and Repair (No. 3.301.M).

5. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

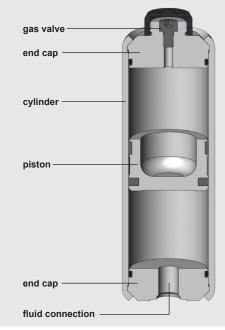
(HYDAC) INTERNATIONAL

Piston Accumulators Series SK280

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.


The compressibility of a gas (nitrogen) is utilised in hydraulic accumulators for storing fluids. HYDAC piston accumulators are based on this principle.

A piston accumulator consists of a fluid section and a gas section with the piston acting as the gas-proof screen. The gas section is pre-charged with nitrogen.

The fluid section is connected to the hydraulic circuit so that the piston accumulator draws in fluid when the pressure increases and the gas is compressed.

When the pressure drops, the compressed gas expands and forces the stored operating fluid into the circuit.

1.2. DESIGN

HYDAC piston accumulators consist of:

- a cylinder with very finely machined internal surface,
- end caps on the gas side and the oil side. Sealed with O-rings.
- a floating steel or aluminium piston.
- a sealing system adapted to the particular application. The piston floats on two guide rings which prevent metalto-metal contact between the piston and the accumulator wall. Suitable materials are also available for low temperature applications.

1.3. TYPE OF INSTALLATION

HYDAC can provide suitable accumulator clamps for the piston accumulator series SK280. The table at section 3 lists the appropriate clamps for each individual diameter. In order to prevent deformation of the cylinder, we recommend that the accumulators are mounted using two clamps, one at each end cap.

1.4. ADVANTAGES OF THE SK280

- Optimized production process, saving on material and manufacturing costs
- Reduced-weight series
- Reduced installation space
- Standard gas valve M28x1.5 integrated into end cap (non-rechargeable version possible)
- Endurance-tested (function and fatigue tests)

1.5. DESIGN PRESSURE

- Standard 280 bar
- Manufactured and inspected in accordance with European Pressure Equipment Directive (PED)

higher pressures on request

1.6. SEALING SYSTEM

- Piston type 3: NBR/PUR
- Temperature range: -20 °C ... + 80 °C
 Mobile special applications -40 °C ... +100 °C

1.7. COMMISSIONING The operating instruction must be

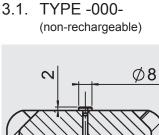
Piston Accumulators

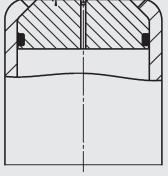
 Piston Accumulators No. 3.301.BA

For further information, please turn to the section:

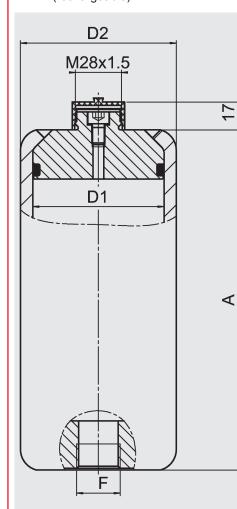
 Piston Accumulators Standard No. 3.301

2. TECHNICAL SPECIFICATIONS


2.1. MODEL CODE


Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u>SK280</u> -	<u>1 / 3218</u>	<u>8 U</u> - <u>2</u>	280 AAD	- <u>VB</u> -	<u>05</u> - <u>030</u>
Series						
Nominal volume [I]						
Material and piston code						
Piston design type (see section 1.6.)						
Material: piston 2 = carbon steel						
Material of cylinder and end caps 1 = carbon steel						
Material: seals including piston seals 8 = NBR/PUR (polyurethane) Certification code U = European Pressure Equipment Directive (PED)						
Permitted operating pressure [bar]						
Fluid port AAD = Threaded connection to ISO 228 Size G 1/2						
AAE = Threaded connection to ISO 228 Size G 3/4						
AAF = Threaded connection to ISO 228 Size G 1						
ACE = Threaded connection to SAE J 514 Size 9/16-18UNF, SAE #6						
ACF = Threaded connection to SAE J 514 Size 3/4-16UNF, SAE #8						
ACH = Threaded connection to SAE J 514 Size 1 1/16-12UN, SAE #12						
ACK = Threaded connection to SAE J 514 Size 1 5/16-12UN, SAE #16						
Gas-side connection or gas valveVB=Gas valve type M28x1.5/M8 integrated into gas side end cap000=Non-rechargeable version (see drawing, section 3.1.) on request						
Piston diameter 05 = 50 mm						
Pre-charge pressure p, [bar] at 20 °C, must be stated clearly, if required!	1					


other sizes and versions on request

3. DIMENSIONS

3.2. TYPE -VB-(rechargeable)

Perm.	operating	pressure	280	bar	(PED)
Carbo	n steel				

Nominal volume	D1	D2	A±3	F	Part no. 1)	F	Part no. 1)	Weight	Mounting clamps ²⁾
[I]	[mm]	[mm]	[mm]	to ISC	228	to SAE	J 514	[kg]	
0.16			160		3200525	9/16-	-	2	
0.32			240		3200521	18UNF	-	2.5	3018442
0.5	50	60	335	G 1/2	3200528	0/4	-	3.1	HRGKSM 0
0.75			460		3200522	3/4- 16UNF	-	4	R 58-61/62 ST
1			590		3200523	100141	-	4.8	
0.32			205		3200524		-	4	
0.5]		265		3200546		-	4.7	
0.75			355		3200547		-	5.8	444912
1	60	75	445	G 1/2	3200548	3/4- 16UNF	-	6.9	HRGKSM 0
1.5			620		3200549	100141	-	9.1	R 73-76/76 ST
2]		800		3200550		-	11.4	
2.5			975		3200551		-	13.6	
0.5			210		3200552		-	6.5	
0.75			260	10 3200554	3200553	1 1/16- 12UN	-	7.2	444995 HRGKSM 0 R 92-95/96 ST
1]		310		3200554		-	8	
1.5		95	410		3200557		-	9.5	
2	80		510	G 3/4	3200558		-	11.5	
2.5			605		3200559		-	13	
3			705		3200560		-	14.5	
3.5			805		3200561		-	16	
4			905		3200562		-	17.5	
0.75			235		3200563		3984528	11.7	
1			265		3200564		3984529	12.5	
1.5			330		3200565		3984530	14.3	
2			395		3200566		3984531	16	444505
2.5	100	120	460	G 1	3984479	1 5/16-	3984533	18	HRGKSM 1
3	100	120	520	GI	3200568	12UN	3984534	19.5	R 119-127/124
3.5			585		3984478		3984555	21.5	ST
4			650		3200569		3984556	23	
5			775		3200570		3984557	26.3	
6			900		3200571		3984558	30	
4			445		4092344		4092420	29	
5			528		4092395		4092421	32.5	
6			609		4092396	4 5/40	4092422	36	444321 HRGKSM 1 R 146-154/151 ST
7	125	150	691	G 1	4092397	1 5/16- 12UN	4092423	39.5	
8			772		4092398	12011	4092424	43	
9			854		4092399		4092445	46.5	
10]		935		4092400		4092446	50	

¹⁾ preferred models, others on request

²⁾ Clamps must be mounted near the end caps in order to prevent deformation of the cylinder; for further information see following catalogue section:
 Supports for Hydraulic Accumulators

No. 3.502

NOTE 4.

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet **66280 Sulzbach/Saar, Germany** Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

E 3.303.5/01.17

HYDAD INTERNATIONAL

High pressure

Piston Accumulators

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.

The compressibility of a gas is utilised in hydraulic accumulators for storing fluids.

HYDAC piston accumulators are based on this principle, using nitrogen as the compressible medium.

A piston accumulator consists of a fluid section and a gas section with the piston acting as the gas-proof screen. The gas section is pre-charged with nitrogen. The fluid section is connected to the hydraulic circuit so that the piston accumulator draws in fluid when the pressure increases and the gas is compressed.

When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

HYDAC piston accumulators can be used in a wide variety of applications and are also available in different pressure ranges, see also catalogue sections:

- Piston Accumulators Standard No. 3.301
- Piston Accumulators Series SK280 No. 3.303

1.2. DESIGN

The high pressure piston accumulator consists of:

- a cylinder with very finely machined internal surface,
- end caps on the gas side and the oil side,
- O-ring seals,
- floating metal piston,
- high pressure sealing system.

The piston floats on guide rings which prevent metal-to-metal contact between the piston and the accumulator wall. For use with aggressive or corrosive fluids, the parts coming into contact with the fluid can be made of corrosion-resistant material. Suitable materials are also available for low temperature applications.

1.3. SEALING SYSTEMS

Precise information about the intended operating conditions is required in order to select the most appropriate sealing system for the application. Important criteria for this selection are, for example:

- Design pressure,
- Actual pressure differential,
- Switching frequency or cycles,
- Piston velocity,
- Operating temperature,
- Operating fluid,
- Cleanliness of fluid (micron rating of filter),
- Maintenance requirements.

For high-pressure piston accumulators, an advanced piston of type 2 is used, which has been modified for applications up to 1000 bar. Hydraulic accumulators must only be operated with hydraulic fluids with a minimum cleanliness class of:

- NAS 1638 Class 6 or
- ISO 4406 Class 17/15/12.

1.4. INSTALLATION POSITION AND TYPE OF INSTALLATION

HYDAC piston accumulators operate in any position. Vertical installation with the gas-side uppermost is preferable, to prevent contamination from the fluid settling on the piston seals. Information on secure installation and

mounting elements can be found in the following catalogue sections:

- Piston Accumulators Standard
 - No. 3.301
- Supports for Hydraulic Accumulators No. 3.502

The operating instruction must be followed! No. 3.301.BA

TECHNICAL SPECIFICATIONS 2.

2.1. EXPLANATORY NOTES

2.1.1 **Operating pressure** 690 bar / 800 bar / 1000 bar others on request

2.1.2 Operating temperature -20 $^\circ C$... +50 $^\circ C$

others on request

2.1.3 Working temperature and operating fluid

The permitted working temperature of a piston accumulator is dependent on the application limits of the metal materials and the piston seal. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materia	als	Material	Temperature range	Overview of the fluids ²⁾			
		code 1)		Resistant to	Not resistant to		
NBR	Acrylonitrile	2	-20 °C + 80 °C	 Mineral oil (HL, HLP) 	 Aromatic hydrocarbons 		
	butadiene rubber			 Flame-resistant fluids from the groups HFA, HFB, HFC 	 Chlorinated hydrocarbons (HFD-S) 		
		_		 Synthetic ester (HEES) 	 Amines and ketones 		
		5	-40 °C + 80 °C	• Water	 Hydraulic fluids of type HFD-R 		
				 Sea water 	• Fuels		
FKM	Fluorine rubber	6	-15 °C +160 °C	Mineral oil (HL, HLP)	Amines and ketones		
				 Hydraulic fluids of type HFD, 	Ammonia		
				 Synthetic ester (HEES) 	 Skydrol and HyJet IV 		
				• Fuels	● Steam		
				 Aromatic hydrocarbons 			
				 Inorganic acids 			

¹⁾ see section 2.2. Model code, material code and piston code, material of seals incl. piston

2) others available on request

2.1.4 Gas charging

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 μ m. If other gases are to be used, please contact us for advice.

2.2. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u> SK690 – 1 / 2212 U – 690 APE – VB – 08 UP2 – 1 – 300</u>
Series	
Nominal volume [I]	
Material and piston code	
Piston design type	
High-pressure version, piston 2 (see section 1.3.)	
Piston material	
2 = carbon steel	
3 = stainless steel ¹)	
Material of cylinder and end caps	
1 = carbon steel	
3 = stainless steel ¹)	
Material of seals including piston seals	
2 = NBR ² / PTFE	
6 = FKM / PTFE	
Certification code	
U = European Pressure Equipment Directive (PED)	
Permitted operating pressure [bar]	
Fluid connection	
Type of connection (see Table 1)	
Standard or specification of the type of connection (see Table 2)	
Size of connection (see Table 3)	
Gas side connection or gas valve	
Type of connection (see Table 1)	
Standard or specification of the type of connection (see Table 2)	
Size of connection (see Table 3)	
Piston diameter	
Piston diameter 08 = 80 mm	
$12 = 125 \mathrm{mm}$	
15 = 150 mm	
18 = 180 mm	
Supplementary equipment*	
M = magnetic flap indication	
UP = piston position switch	
(e.g. UP2 = 2 position switches, UPEX = ATEX version)	
Safety equipment*	
1 = bursting disc (please give nominal pressure and temperature)	
Pre-charge pressure p _e [bar] at 20 °C*	

 ^{*} if required, please state at time of ordering!
 ¹⁾ Dependent on type and pressure range
 ²⁾ Observe temperate ranges, see section 2.1.3

Table 1, Connection type						
Code letter	Description					
А	Threaded connection (female) \rightarrow Table 2 and then 3					
К	High pressure port \rightarrow Table 4					
V	Gas valve port \rightarrow Table 5					
S	Special port on request					

Table 2, standard or specification, threaded connection

Code letter	Description				
A	Thread to ISO 228 (BSP)				
В	Thread to DIN 13 or ISO 965/1 (metric)				
С	Thread to ANSI B1.1 (UN2B, seal SAE J 514)				
D	Thread to ANSI B1.20.3 (NPTF)				

Table 3, threaded connection sizes

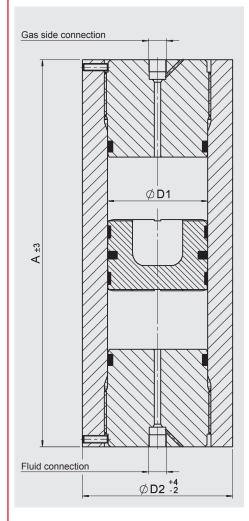
Type Table 2	Code letter, size								
	A	В	С	D	E	F	G		
A	G 1/8	G 1/4	G 3/8	G 1/2	G 3/4	G 1	G 1 1/4		
В	M10x1	M12x1.5	M14x1.5	M16x1.5	M18x1.5	M22x1.5	M27x2		
С	5/16-24UNF	3/8-24UNF	7/16-20UNF	1/2-20UNF	9/16-18UNF	3/4-16UNF	7/8-14UNF		
D	1/16-27 NPTF	1/8-27 NPTF	1/4-18 NPTF	3/8-18 NPTF	1/2-14 NPTF	3/4-14 NPTF	1-11 1/2 NPTF		

Table 4, connection size for preferred high pressure ports (e.g. Maximator)

	Code letter, size	Code letter, size						
	KCQ	KCR	KCT	KUR	KUY	KWB	KWP	
1st connection	13/16-16UNF (9MF)	13/16-16UNF (9MF)	9/16-18UNF (6MF)	9/16-18UNF (6MF)	1 3/8-12UNF (16MF)	9/16-18UNF (6MF)	3/4-16UNF (6HF)	
2nd connection	13/16-16UNF (9MF)	-	-	9/16-18UNF (6MF)	-	G 3/4-ISO228	-	
a the second second second second								

other connections on request

Table 5, gas valve port


Code letter	Description
В	Gas valve end connection M28x1.5/M8 (max. pre-charge pressure 800 bar with FPU-2)
М	Gas valve, male, for high pressure port 9/16-18UNF (6MF) (no limit for pre-charge pressure)

Note: Application examples, accumulator sizing and extracts from approvals regulations on hydraulic accumulators can be found in the following catalogue section:

HYDAC Accumulator Technology No. 3.000

60 HYDAC

3. DIMENSIONS

3.1. SERIES: SK690

max. permitted operating pressure: 690 bar (PED)

Volume	Ø D1	Ø D2		А	approx. weight	
[1]	[mm]	Carbon steel [mm]	Stainless steel [mm]	[mm]	Carbon steel [kg]	Stainless steel [kg]
<u>[1]</u>	[[iiiiii]	funni	funnd	[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[~9]	[[49]
0.5 - 10	80	107	110	280 - 2170	15 - 74	16 - 83
1 - 20	125	160	160	295 - 1845	37 - 133	37 - 133
5 - 30	150	190	200	535 - 1950	75 - 194	88 - 241
5 - 50	180	246	220	480 - 2250	136 - 443	94 - 269

3.2. SERIES: SK800

max. permitted operating pressure: 800 bar (PED)

Volume	Ø D1	Ø D2		A	approx. wei	ght
[1]	[mm]	Carbon steel [mm]	Stainless steel [mm]	[mm]	Carbon steel [kg]	Stainless steel [kg]
0.5 - 10	80	107	110	280 - 2170	15 - 74	16 - 83
1 - 20	125	162	160	295 - 1845	38 - 140	37 - 133
5 - 30	150	185	200	535 - 1990	80 - 182	87 - 240
5 - 50	180	246	224	480 - 2250	136 - 443	100 - 293

3.3. SERIES: SK1000

max. permitted operating pressure: 1000 bar (PED)

Volume	Ø D1	Ø D2		A	approx. weight	
[1]	[mm]	Carbon steel [mm]	Stainless steel [mm]	[mm]	Carbon steel [kg]	Stainless steel [kg]
1.1	[[]	[]	[]	[]	1	1
0.5 - 10	80	120	119	310 - 2200	23 - 117	22 - 113
1 - 20	125	172	164	295 - 1840	44 - 178	40 - 148
5 - 30	150	200	250	575 - 1990	100 - 253	179 - 529
5 - 50	180	246	280	555 - 2325	168 - 475	229 - 732

4. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

E 3.302.5/01.17

HYDAC INTERNATIONAL Diaphragm Accumulators

1. DESCRIPTION

1.1. FUNCTION

Fluids are practically incompressible and cannot therefore store pressure energy.

The compressibility of a gas is utilised in hydraulic accumulators for storing fluids. HYDAC diaphragm accumulators are based on this principle, using nitrogen as the compressible medium.

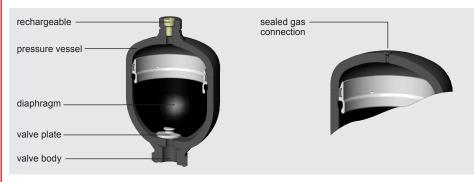
Diaphragm accumulators consist of a fluid section and a gas section with the diaphragm acting as a gas-tight separation element.

The fluid section is connected to the hydraulic circuit so that the diaphragm accumulator draws in fluid when the pressure increases and the gas is compressed. When the pressure drops, the compressed gas expands and forces the stored fluid into the circuit.

Set into the base of the diaphragm is a valve poppet. This shuts off the hydraulic outlet when the accumulator is completely empty and thus prevents damage to the diaphragm.

Note:

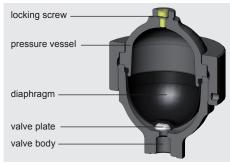
HYDAC diaphragm accumulators when fitted with a HYDAC safety and shut-off block comply with the regulations of the European Pressure Equipment Directive (PED) and the German Industrial Safety Regulations (Betr.Sich.V.).


See catalogue section:

 Safety and Shut-off Block SAF/DSV No. 3.551

1.2. DESIGN

HYDAC diaphragm accumulators are available in two versions.


1.2.1 Weld type

This consists of:

- Welded pressure vessel, rechargeable on the gas side or, alternatively, completely sealed. Fluid connection available in various types.
- Flexible diaphragm to separate the fluid and gas sections.
- Valve poppet set into the base of the diaphragm.

1.2.2 Screw type

This consists of:

- Forged upper section with gas charging connection.
- Forged lower section with fluid connection.
- Exchangeable flexible diaphragm to separate the gas and fluid.
- Vulcanized valve poppet set into the base of the diaphragm.
- Lock nut to hold the upper and lower sections of the accumulator together.

1.2.3 Diaphragm material

The diaphragm material must be selected in accordance with the particular operating fluid or operating temperature, see section 1.5.

If discharge conditions are unfavourable (high p_2/p_0 pressure ratio, rapid discharge speed), the gas may cool to below the permitted temperature. This can cause cold cracking. The gas temperature can be calculated using the HYDAC Accumulator Simulation Program **ASP**.

1.2.4 Corrosion protection

For use with chemically aggressive fluids the accumulator can be supplied with corrosion protection, such as plastic coating or a galvanic or chemical surface protection. If this is insufficient, then almost all types can be supplied in stainless steel.

1.3. INSTALLATION POSITION

Optional. However, if there is a risk of contamination collecting, a vertical position is preferable (fluid connection at the bottom).

E 3.100.27/01.17

1.4. TYPE OF INSTALLATION

Accumulators up to 2 I can be screwed directly inline.

Where strong vibrations are expected, the accumulator must be secured to prevent it working loose. For weld type accumulators we recommend HYDAC support clamps. For screw type accumulators with lock nut, a suitable support console can be ordered.

For additional male thread on the hydraulic connection for screwing into mounting holes, see table 3.1.

See catalogue section:

• Supports for Hydraulic Accumulators No. 3.502

1.5. GENERAL

1.5.1 **Permitted operating pressure** see tables 3.1. and 3.2.

The permitted operating pressure can differ from the nominal pressure for foreign test certificates.

1.5.2 **Nominal volume** see tables 3.1. and 3.2.

1.5.3 Effective gas volume

corresponds to the nominal volume of the diaphragm accumulator.

1.5.4 **Effective fluid volume** Volume of fluid which is available between the operating pressures p_2 and p_4 .

1.5.5 Gas charging

All accumulators are supplied with a protective pre-charge. Higher gas pre-charge pressures are available on request (gas charging screw or sealed gas connection).

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to <3 $\mu m.$

If other gases are to be used, please contact HYDAC for advice.

1.5.6 Limits for gas pre-charge pressure

 $p_0 \le 0.9 \bullet p_1$

For diaphragm accumulators with PTFE diaphragms, the following applies: $p_{0tmax} \le 200$ bar

for further information, see catalogue section:

• HYDAC Accumulator Technology No. 3.000

1.5.7 **Permitted pressure ratio** Ratio of maximum operating pressure p_2 to gas pre-charge pressure p_n .

1.5.8 Max. flow rate of the operating fluid

In order to achieve the max. flow rate given in the tables, a residual fluid volume of approx. 10 % of the effective gas volume must remain in the accumulator.

The maximum fluid flow rate was determined under specific typical conditions and is not applicable in all operating conditions.

1.5.9 Working temperature and operating fluid

The permitted working temperature of a diaphragm accumulator is dependent on the application limits of the metal materials and the diaphragm. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materi	als	Material Temperature range		Overview of the fluids ²⁾			
		code 1)		Resistant to	Not resistant to		
NBR	Acrylonitrile butadiene rubber	2 5	-15 °C + 80 °C -50 °C + 50 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the groups HFA, HFB, HFC Synthetic ester (HEES) Water Sea water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R Fuels 		
ECO	Ethylene oxide epichlorohydrin rubber	3	-40 °C +120 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the HFB group Synthetic ester (HEES) Water Sea water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R Flame-resistant fluids from the groups HFA and HFC Fuels 		
IIR	Butyl rubber	4	-50 °C +120 °C	 Hydraulic fluids of type HFD-R Flame-resistant fluids from the group HFC Water 	 Mineral oils and mineral greases Synthetic ester (HEES) Aliphatic, chlorinated and aromatic hydrocarbons Fuels 		
FKM	Fluorine rubber	6	-10 °C +150 °C	 Mineral oil (HL, HLP) Hydraulic fluids of type HFD, Synthetic ester (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Amines and ketones Ammonia Skydrol and HyJet IV Steam 		

¹⁾ see section 2.1. Model code, material code, diaphragm

2) others available on request

1.5.10 Certificate codes

Hydraulic accumulators which are installed in countries outside Germany are supplied with the test certificates required in that country. The country of installation must be stated at the time of ordering.

HYDAC pressure vessels can be supplied with virtually any test certificate. Please note that the permitted operating pressure can differ from the nominal pressure.

The following table contains a few examples of the codes used in the model code for different countries of installation:

Country	Certificate
	code
	(AKZ)
EU member states	U
Australia	F ¹⁾
Belarus	A6
Canada	S1 ¹⁾
China	A9
Hong Kong	A9
Iceland	U
Japan	Р
Korea (Republic)	A11
New Zealand	Т
Norway	U
Russia	A6
South Africa	S2
Switzerland	U
Turkey	U
Ukraine	A10
USA	S
¹⁾ Registration required in the individu	al territories or

¹⁾ Registration required in the individual territories or provinces.

others on request

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell. After the hydraulic line has been connected it must be completely vented. Work on systems with hydraulic accumulators (repairs, connecting pressure gauges etc.) must only be carried out once the fluid pressure has been released.

The operating instruction must be followed! No. 3.100.BA

Note:

Application examples, accumulator sizing and extracts from approvals regulations on hydraulic accumulators can be found in the catalogue section:

 HYDAC Accumulator Technology No. 3.000

2. TECHNICAL SPECIFICATIONS

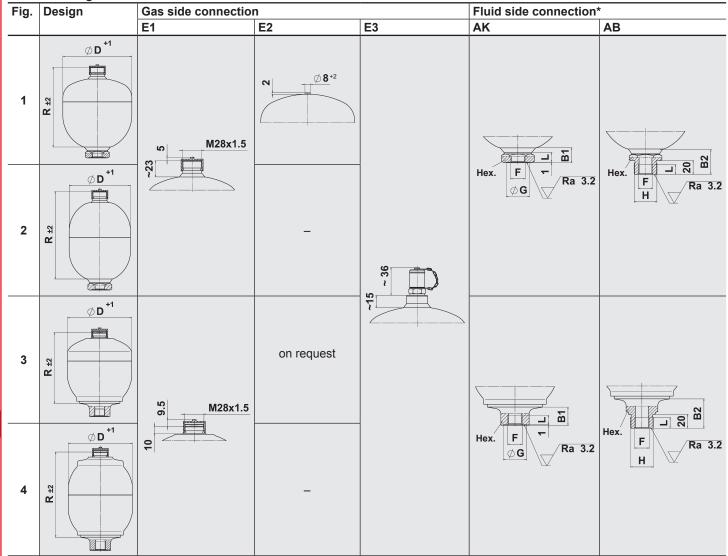
2.1. MODEL CODE

Not all combinations are possible. Order example. For further information, please contact HYDAC.

	<u>SBO210 – 2 E1 / 112 U – 210 AK 050</u>
	Series
	Nominal volume [I]
	Turne
	Type
-	E1 = rechargeable M28x1.5 E2 = sealed gas connection, with gas pre-charge as requested ¹⁾ E3 = rechargeable, gas valve M16x1.5 / M14x1.5
-	Screw type
-	A6 = rechargeable M28x1.5, exchangeable diaphragm A3 = gas valve M16x1.5 / M14x1.5, exchangeable diaphragm
-	Meterial code
-	Material code dependent on operating medium
-	standard model = 112 for mineral oils
	Fluid connection 1 = carbon steel
-	3 = stainless steel ²⁾
-	4 = carbon steel with protective coating ³) 6 = low-temperature steel
	7 = other materials
	Accumulator shell
	0 = plastic coating 1 = carbon steel
	$2 = \text{carbon steel with protective coating}^{3)4}$
	4 = stainless steel ²
	6 = low-temperature steel 7 = other materials
	Diaphragm
	2 = NBR ⁵⁾
	3 = ECO 4 = IIR
	4 = IIR $5 = NBR^{5}$
	6 = FKM
	7 = other materials (e.g. PTFE, EPDM,)
	Certification code
	U = European Pressure Equipment Directive (PED)
	Permitted operating pressure [bar]
	Fluid connection form Standard connection = AK or AB
	e.g. form AK = G 3/4
	for SBO210-2 see section 3.

Pre-charge pressure p₀ [bar] at 20 °C, must be stated clearly, if required! ¹⁾

¹⁾ only for E1 or E2 design, when ordered as standard


- ²⁾ dependent on type and pressure level
- ³⁾ only for screw-type design
- ⁴⁾ only for parts that come into contact with fluid
- ⁵⁾ Observe temperature ranges see section 1.5.

3. TECHNICAL DATA

3.1. WELD TYPE

non-exchangeable diaphragms –

3.1.1 Drawings

* = alternative fluid connections on request

E 3.100.27/01.17

Nom. vol. 1)	Perm. press.	Series	Certific U	ate code	R	ØD	Weight	Q ²⁾	Standard fluid connection										Fig.
	ratio		Permitt. oper. pressure [bar]				Ň		Form AK				Form AB						
[I]	p ₂ : p ₀		Carbon steel	Stainless steel	[mm]	[mm]	[kg]	[l/min]	F ISO 228	ØG [mm]	L [mm]	B1 [mm]	Hex. SW	F ISO 228	H DIN 13	L [mm]	B2 [mm]	Hex. SW	
0.075	8:1	250	250	-	91	64	0.7	38	G 1/2	-	14	21	30						
0.16 8:1	0.1	210	210	180	103	74	0.8	38	G 1/2 –	14	21	30]						
0.16	8:1	300	300	-	108	78	1.1	30		-	14	21	30		not ava	ilable			
0.32	0.1	210	210	160	116	93	1.3	05	0.4/0		14	24	00	1					
0.32	8:1	300	300	-	120	96	1.8	95	G 1/2	-	14	21	30						
0.5 0.1	0.1	160	160	-	130	102	1.3	95	0.4/0	4.4	21	20		M2224 E 14	37	4.4	Γ		
0.5	8:1	210	210	-	133	105	1.7	95	G 1/2	-	14	21	30	G 1/2	M33x1.5	14	31	41	
0.0	0.4	330	330	-	151	115	3.3	0.5	0.4/0	0.4	14	04	41			07	41	Γ	
0.6 8:1	350	350	-	130	121	3.5	95	G 1/2	34	14 21	21	50	G 1/2	M33x1.5	14	37	50	t	
0.7	8:1	100	100	-	151	106	1.8	95	G 1/2	34	14	21	41	G 1/2	M33x1.5	14	37	41	t
		140	140	-	142	116	1.8	8						1			07		Γ
~ 		210	210	140	147	121	2.8		G 1/2 34	14 ²¹ 26				14	37				
0.75 8	8:1	250	250	-	152	126	3.6	95				41 G	G 1/2	G 1/2 M33x1.5			41		
		330	330	-	140	126	4	1			26	ĺ			15	42		F	
	8:1	200	200	-	159	136	3.6	;	95 G 1/2 3	34	14 21 26						-	41	t
1		250	250	-	192	100	4.4	95				21	41 G 1/2	G 1/2	2 M33x1.5	14	37		F
	4:1	330	330	-	169	126	4.8					26				15	42	1	F
		140	140	-	173	145	3.9		G 1/2	34	14 21				M33x1.5		1		T
		210	210	-	178	150	5.4	1				21				14	37		
1.4	8:1	250	250	-	185	153	5.9	95				- 4	41	G 1/2		15		41	·
		330	330	-	172	155	7.6	1				33	ĺ				42	1 1	F
	0.1	100	100	100	190	160	4					-							T
0	8:1	210	210	-	198	167	6.6	450	0.014		10	28	10	0.014		16	33	10	
2	4:1	250	250	-	232	153	7.4	150	G 3/4	44	16		46	G 3/4	M45x1.5			46	Γ
	8:1	330	330	-	181	172	9.2	1				43				42	1 1	Γ	
		210	210	-	250	167	8.2					00					00		Г
0.0	4:1	250	250	-	250	170	9.5	1.50	0.014		10	28	40	0.014	145.4 5	10	33	10	
2.8				1	237			150	G 3/4	44	16	43	46	G 3/4	M45x1.5	16		46	F
	6:1	330	330	-	231	172	11					44	1				42		F
		250	210	-	306	170	11.2		0.044		10	28		0.044		10	33		t
3.5	4:1	330	330	-	274	172	13.8	150	G 3/4	44	16	44	- 46	G 3/4	M45x1.5	16	42	46	F
		50	-	50	294	158	5	4-6	0.04					0.04		4.0		1.6	t
4	4:1	250	1_	180	306	170	11.2	150	G 3/4	44	16	44	46	G 3/4	M45x1.5	16	33	46	

¹⁾ others on request ²⁾ max. flow rate of operating fluid

3.2. SCREW TYPE

- exchangeable diaphragm -

9.5

10

0

Ω

Ra 3.2

S

7

Σ

ØD

-

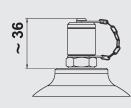
Ø**₽ (4 x O)**

F

 $\phi \mathbf{G}$

ØL

Κ


M28x1.5

3.2.1 Drawings

Type A6

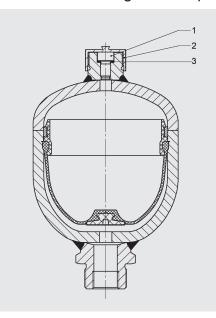
A ^{±2} Z 2

Fluid port AK alternative fluid connections on request

Figure 5

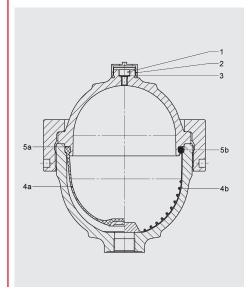
 \subset

3.2.2 Dimensions


Nom. vol. ¹⁾	Perm. press. ratio	Series	Certifica U Permitt pressur		Weight	A	В	ØD	ØL	M	N	0	ØP	R	Q ²⁾	Standarc connecti Form AK	on			Figure
[1]	p ₂ : p ₀		Carbon steel	Stainless steel	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[l/min]	F ISO 228	S [mm]	ØG [mm]	K SW	
0.1	10 : 1	500	500	-	1.9	110	30	95	-	53	35	-	-	-	95	G 1/2	14	-	36	
		500	500	-	3.9	129	20	115	92	56	56									
0.25	10 : 1	500	-	350	4.9	129	20	125	92	50	60	-	-	-	95	G 1/2	14	-	36	1
		750	-	750	9	136	11	153	114	57.5	63	M6	140	12				27		1
0.6	10 : 1	450	450	250	5.7	170	19	140	115	68	57	-	-	-	95	G 1/2	14	34	41	5
1.3	10 : 1	400	400	-	11.2	212	28	199	160	97	65	M8	180	10	150	G 3/4	16	44	50	
2	10 : 1	250	250	180	11.4	227	17	201	168	101	64	M8	188	10	150	G 3/4	16	44	50	
2.8	10 : 1	400	400	-	22	257	30	252	207	106	80	M8	230	10	150	G 3/4	16	44	50	
4	10 : 1	400	400	-	34	284	30	287	236	127.5	90	M8	265	10	150	G 3/4	16	44	50	

¹⁾ others on request ²⁾ max. flow rate of operating fluid

4. SPARE PARTS


4.1. WELD TYPE

- non-exchangeable diaphragms

Description		Quantity	Item		
Spare parts consisting of:	set for gas sid	e			
Locking s	crew	20	1		
Protective	e cap	20	2		
Seal ring		20	3		
Nominal	Part no.				
volume [l]	NBR	ECO	FKM	IIR	PTFE
Spare parts	set for gas sid	е		<u>``</u>	
0.075 - 4	3262845	-	-	-	-

4.2. SCREW TYPE - exchangeable diaphragm -

When replacing seals and/

(No. 3.100.M).

or diaphragms, please read the Instructions for Assembly and Repair

Description				Quantity	Item
Spare parts set consisting of:	t for gas side				
Locking scre	W	20	1		
Protective ca	ар			20	2
Seal ring				20	3
Spare parts kit consisting of:	for elastome	r diaphragm			
Locking scre	W			1	1
Seal ring				1	3
Elastomer d	iaphragm			1	4a
Back-up ring	J			1	5a
Spare parts kit consisting of:	for PTFE dia	ohragm			
Locking scre	W			1	1
Seal ring				1	3
PTFE diaphi	ragm			1	4b
O-ring				1	5b
Nominal	Part no.				
volume [l]	NBR	ECO	FKM	IIR	PTFE
Spare parts set	t for gas side				
0.1 - 4	3262845	-	-	-	-
Spare parts kit					
0.1	3042668	3182526	-	-	-
0.25	3042709	3042712	3042714	3042713	3504798
0.6	3042710	3042715	3042717	3042716	3550388
1.3	3042681	3042682	3042684	-	3446897
2	3042711	3042719	3042721	3042720	3464205
2.8	3042700	3042701	3042704	3042702	-
4	3042705	3042706	3042708	3042707	-

NOTE 4.

.

The information in this brochure relates to the operating conditions and applications described. For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

E 3.100.27/01.17

HYDAD INTERNATIONAL

Metal bellows accumulators

for Heavy-Duty Diesel Engines

1. DESCRIPTION

In the fuel injection system of heavyduty diesel engines (e.g. marine engines and engines for power plants / two and four-stroke), pressure fluctuations are generated during the injection process by the high pressure pumps.

In most heavy-duty diesel engines each cylinder has its own injection pump. During the phases of fuel extraction from the supply line, compression and injection as well as the release of unused fuel into the return line, cyclic pressure pulsations may result.

Example:

600 [rpm] x 8 [cylinders] 60 [s] x 2 [4-stroke] = 40 [Hz]

The supply line and the return line are at a lower pressure than that required for fuel injection and in such dual-pipe systems the above-mentioned pressure fluctuations can cause significant problems, depending on the size of the pressure fluctuations. It is for this reason that superimposed pressure fluctuations from 0 to approx. 13 bar can occur in a 4.5 bar return line (see the graph at section 2). In other systems pressure peaks of over 50 bar have been measured. This fluctuating pressure with its unacceptable pressure peaks creates not only an additional stress on the pipe system but also an additional load for all integrated fittings and equipment. Valves, filters, measurement and monitoring devices, e.g. viscosity meters, etc. can be seriously impaired or damaged, sometimes even irreparably.

Until now a standard method for reducing or eliminating the pulsations has been to use hydraulic accumulators with nitrogen as the damping element and an elastomer diaphragm or bladder as the separating element between the gas and the fuel. The best damping results may be obtained by installing one damper in the supply line and one in the return line close to the engine. However, standard diaphragm and bladder accumulators have two main limitations:

Problems with elastomer resistance to fuels and high temperatures.

Fuels other than diesel oil, such as bio-oils or heavy fuel oil, require higher injection temperatures. These can reach 160 °C. Even FKM used for the diaphragm or bladder has compatibility problems under such extreme conditions.

Gas loss through the elastomer

The accumulator gradually loses gas through the elastomer and the higher the temperature the higher the gas loss. If it is not possible to recharge the accumulator regularly, its function will deteriorate and the diaphragm or bladder will split.

These last two disadvantages can only be prevented by a relatively high investment in monitoring and maintenance. Depending on the type of fuel and its operating temperature, it can be necessary to replace the elastomer part after specific intervals.

HYDAC set itself the task of developing a pulsation damper without the problems outlined which above all would also avoid the problems generated by other solutions (e.g. piston accumulators, spring accumulators, accumulators with elastic damping elements inside). These solutions have problems either with friction and wear or fuel leakage. One of the prime targets was to relieve the system operator of the burden of excessive monitoring and maintenance.

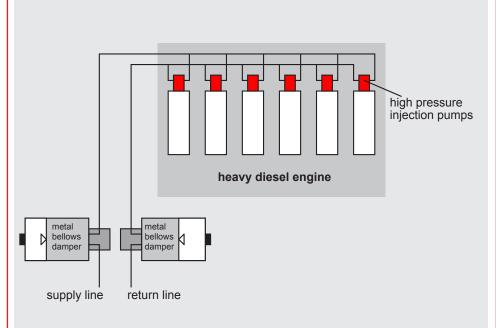
The recently developed solution from HYDAC is the metal bellows accumulator. Instead of a bladder or diaphragm, a metal bellows is used as the flexible separation element between fluid and gas. These bellows are resistant to all conventional fuels over a very wide temperature range. Heavy fuel oil at temperatures of up to 160 °C is no problem for these dampers. The metal bellows are welded to the other components and are therefore completely gas-tight. They are able to move up and down inside the accumulator without any friction or wear and can operate for a very long time (years) with just one adjustment. Monitoring and maintenance for this type of damper are therefore reduced to a minimum.

A diverting block is built into the fuel side of the damper which forces the fuel directly into the accumulator, thereby increasing the damping efficiency considerably. If two dampers are fitted to the fuel system (in both supply and return line), no pressure fluctuations can leave the engine before passing through one of the metal bellows dampers.

With this metal bellows accumulator, HYDAC has developed a competitively priced damper which is unrivalled in terms of maintenance. The purchase costs will be recouped within a short time and as a result of reduced maintenance, the availability of the entire system is increased.

For further benefits, see below.

1.1. BENEFITS OF THE SM50P-...


- Maintenance-free

 extremely gas-tight
 frictionless parts (non-wearing)
- Fluid resistant across whole temperature range
- Cost-effective: "fit and forget"

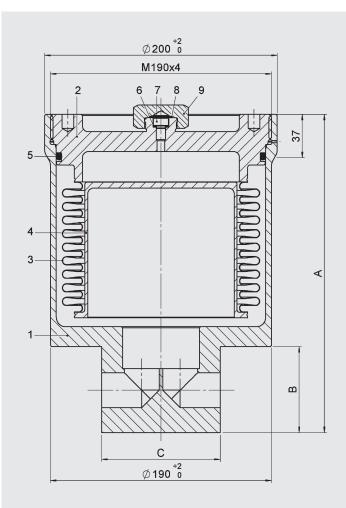
PRESSURE GRAPH 2. 14 13 12 11 line [bar] ⁶ 11 return 8 $\Delta p = 0.5 ba$ 7 pressure in the 6 5 0 0.05 0,1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 time [sec] green = without damper blue = with damper

3. INSTALLATION OF THE SM50P-...

3.1. DIAGRAM

3.2. MODEL

3D standard model, e.g. for inline installation.

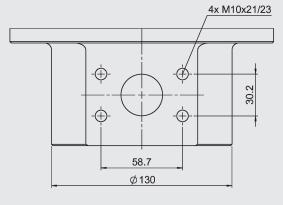

Special connections on request

E 3.304.4/01.17

4. TECHNICAL	
SPECIFICATIONS	4.2. MODEL CODE
4.1. TECHNICAL DATA	Not all combinations are possible. Order example. For further information, please contact HYDAC.
Operating pressure: 3 12 bar (others on request)	
Max. pre-charge pressure: 4 bar (at max. operating temperature)	<u>SM50 P - 0,5 W E 1/ 116 U - 50 AAJ - 2,5</u>
Design temperature range: -10 °C +160 °C	<u>Series</u>
Operating fluids: Diesel and heavy fuel oil, biofuels	
Total volume: 3.8 litres	Type code = accumulator without diverting block*
Effective gas volume: 0.5 litres (nitrogen)	L = light-weight accumulator* P = damper with diverting block
Gas-side fluid pre-charge: 0.6 litres (ethylene glycol)	Capacity [I]
Fluctuating volumes: max. 0.04 litres (others on request)	
Material:	Version
Carbon steel (primed externally)	W = convoluted bellows M = diaphragm bellows*
Design and approval: PED / ABS / DNV / GL / LR / BV / AS1210 /	
Fluid connection:	Type of shell A = screw type
SAE 1 1/4" - 3000 psi SAE 2" - 3000 psi	E = weld type*
SAE 3" - 3000 psi Gas connection:	G = formed type*
M28x1.5 for Universal Charging and	
Testing Unit FPU-1 Material: 3398235	Type of gas-side connection 1 = gas pressure adjustable (M28x1.5)
Installation:	2 = gas pressure pre-set, non-adjustable gas locking screw*
Vertical (gas connection at top) Others on request Weight:	3 = gas pressure adjustable (M16x1.5)
22 33 kg depending on the connection	Material code
size	Fluid port
	1 = carbon steel 2 = carbon steel with corrosion protection 3 = stainless steel
	Accumulator shell
	1 = carbon steel 2 = carbon steel with corrosion protection
	4 = stainless steel
	Seal material 0 = no seal
	2 = NBR* 5 = low temperature NBR*
	6 = FKM
	Certification code
	U = European Pressure Equipment Directive (PED)
	Permitted operating pressure [bar]
	Fluid port
	see tables in catalogue section 3.301, Piston Accumulators
	Pre-charge pressure p ₀ [bar] at 20 °C must be stated clearly, if required!
	* currently only on request
1	

E 3.304.4/01.17

4.3. DIMENSIONS

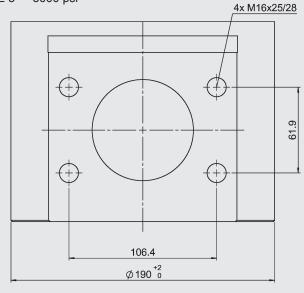

Item	Description
1	Accumulator lower section
2	Accumulator cover plate
3	Metal bellows
4	Bowl
5	O-ring
6	Seal ring
7	Locking screw
8	O-ring
9	Protective cap

4.4. ACCUMULATOR CONNECTION

	Dimension [mm]			
	SAE 1 1/4" (FCD)*	SAE 2" (FCF)	SAE 3" (FCH)	
а	274	294	333	
В	74	94	134	
С	102	120	133	

* FCD = formerly AD

SM50P-3,8A6/116...FCD SAE 1 1/4" - 3000 psi


SM50P-3,8A6/116...FCF SAE 2" - 3000 psi

-(‡)-Ð 42.9 \oplus \oplus 77.8 Ø160

4x M12x22/25

SM50P-3,8A6/116...FCH

SAE 3" - 3000 psi

E 3.304.4/01.17

4.5. FLOW RATES / TEMPERATURE DEPENDENCY

Series SM50F	o	Bore	Max. flow rate	Weight	A	Ext. diam.
Conne SAE [ir	nch] -		Q _{max}			Da
3000 p	si	[mm]	[m³/h]	[kg]	[mm]	[mm]
1 1/4	FCD	30	< 8	22	274	
2	FCF	50	8 - 21	25	294	200
3	FCH	73	> 21	33	333	

4.6. BUTT WELD AND SOCKET WELD FLANGES

3000 psi

Pressure: Seal: FKM

2

3

50

73

61

90.5

45

50

25

27

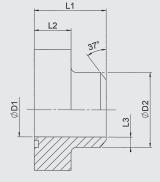
24

28

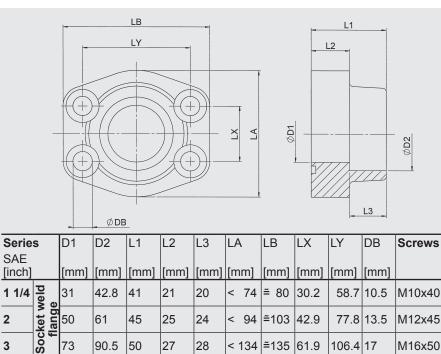
< 94

l≅103 |42.9

< 134 ≅135 61.9


77.8 13.5

106.4 17


M12x45

M16x50

			· ·										
	Serie	s	D1	D2	L1	L2	L3	LA	LB	LX	LY	DB	Screws
	SAE [inch]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	1 1/4		-	42.8	41	21	3	< 74	≅ 80	30.2	58.7	10.5	M10x40
1	2	utt wel flange	50	61	45	25	5.5	< 94	≅103	42.9	77.8	13.5	M12x45
;	3	Bu	73	89	50	27	8	< 134	≅135	61.9	106.4	17	M16x50

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany +49 (0) 68 97 / 509 - 01 Tel.: Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

5. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. Please contact the relevant technical department.

Subject to technical modifications.

HYDAC | 75

HYDAD INTERNATIONAL

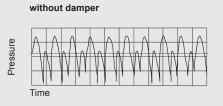
Hydraulic dampers

1. DESCRIPTION

1.1. FUNCTION

The pressure fluctuations occurring in hydraulic systems can be cyclical or oneoff problems due to:

- flow rate fluctuations from displacement pumps
- actuation of shut-off and control valves with short opening and closing times
- switching on and off of pumps
- sudden linking of spaces with different pressure levels.


HYDAC hydraulic dampers are particularly suitable for damping such pressure fluctuations.

Selecting the most suitable hydraulic damper for each system ensures that

- vibrations caused by pipes, valves, couplings etc. are minimised and subsequent pipe and valve damage is prevented
- measuring instruments are protected and their performance is no longer impaired
- the noise level in hydraulic systems is reduced
- the performance of machine tools is improved
- interconnection of several pumps in one line is possible
- a pump rpm and feed pressure increase is possible
- the maintenance and servicing costs can be reduced
- the service life of the system is increased.

2. APPLICATION

2.1. PULSATION DAMPING TYPE SB...P / SBO...P

with accumulator

	(standard connection bladder accumulator)
ressure	<u>terretor (prograficantor) protor (protor) protor) protori (protor) protori (protor) protori (protor) protori (</u> prot
ш	Time

with accumulator

 	 	 	 	 hum	L

2.1.1 General

The HYDAC pulsation damper

- prevents pipe breaks caused by material fatigue, pipe oscillations and irregular flow rates,
- protects valves, control devices and other instruments,
- improves noise level damping.

2.1.2 Applications

The pulsation damper is particularly suitable for hydraulic systems, displacement pumps, sensitive measurement and control instruments and manifolds, e.g. in process circuits in the chemical industry.

2.1.3 Mode of operation

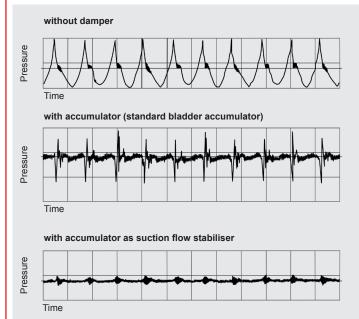
The pulsation damper generally has two fluid connections and can therefore be fitted directly inline.

The flow is diverted in the fluid valve so that it is directed straight at the bladder or diaphragm. This causes direct contact of the flow with the bladder or diaphragm which, in an almost inertia-less operation, balances the flow rate fluctuations via the gas volume.

It particularly compensates for higher frequency pressure oscillations. The precharge pressure is adjusted to individual operating conditions.

2.1.4 Design

The HYDAC pulsation damper consists of:


- the welded or forged pressure vessel in carbon steel; available with internal coating or in stainless steel for chemically aggressive fluids;
- the special fluid valve with inline connection, which guides the flow into the vessel. (threaded or flange connection).
- the bladder or diaphragm in various elastomers as shown under section 4.2.

2.1.5 Installation

As close as possible to the pulsation source. Mounting position preferably vertical (gas valve pointing upwards). Preferred and alternative installation positions are shown in schematic form in section 3.

HYDAC 77

2.2. SUCTION FLOW STABILISER TYPE SB...S

2.2.1 General

The HYDAC suction flow stabiliser

- improves the NPSH value of the system;
- prevents cavitation of the pump;
- prevents pipe oscillations.

2.2.2 Applications

Main application areas are piston and diaphragm pumps in public utility plants, reactor construction and the chemical industry.

2.2.3 Mode of operation

Trouble-free pump operation is only possible if no cavitation occurs in the pump suction and pipe oscillations are prevented. A relatively high fluid volume in the suction flow stabiliser in relation to the displacement volume of the pump reduces the acceleration effects of the fluid column in the suction line. Also an air separation is achieved due to the extremely low flow rate in the suction flow stabiliser and the deflection on a baffle. By adjusting the charging pressure of the bladder to the operating conditions, the best possible pulsation damping is achieved.

2.2.4 Design

The HYDAC suction flow stabiliser consists of a welded vessel in steel or stainless steel.

Inlet and outlet are on opposite sides and are separated by a baffle. The upper part houses the encapsulated bladder. In addition, there is an air bleed screw in the cover and a drainage facility on the bottom.

2.2.5 Installation

As close as possible to the suction inlet of the pump. Mounting position vertical (gas valve pointing upwards).

2.3. SHOCK ABSORBER TYPE SB...A

without damper

2.3.1 General

The HYDAC shock absorber

- reduces pressure shocks;
- protects pipelines and valves from being destroyed.

2.3.2 Applications

The accumulators are particularly suitable for use in pipelines with quick-acting valves or flaps and whilst pumps are being switched on and off.

They are also suitable for energy storage in low pressure applications.

2.3.3 Mode of operation

Sudden changes in pipeline flow, such as those caused by pump failure or the closing or opening of valves, can cause pressures which are many times higher than the normal values.

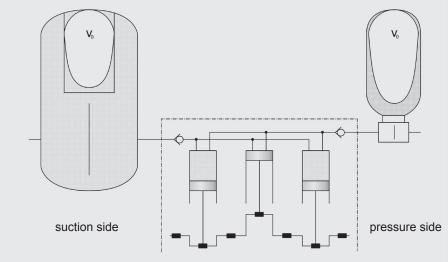
The shock absorber prevents this by converting potential into kinetic energy and vice versa. This prevents pressure shocks and protects pipelines, valves, monitoring instruments and other pipe fittings from destruction.

2.3.4 Design

The HYDAC shock absorber consists of:

- the welded pressure vessel in carbon steel with or without corrosion protection or in stainless steel;
- the connection including perforated disc which prevents the flexible bladder from extruding from the vessel, and the flange;
- the bladder in various elastomer qualities as shown under section 4.2. with built-in gas valve, which is used for charging pressure p₀ and for possible monitoring activities.

2.3.5 Special version


Shock absorbers can also be in the form of diaphragm or piston accumulators. Available on request.

2.3.6 Installation

As close as possible to the source of the erratic condition. Mounting position vertical (gas valve pointing upwards).

3 SIZING

3.1. PULSATION DAMPER AND SUCTION FLOW STABILISER

On the suction and pressure side of piston pumps almost identical conditions occur regarding irregularity of the flow rate. Therefore the same formulae for determining the effective gas volume are used for calculating the damper size. That in the end two totally different damper types are used is due to the different acceleration and pressure ratios on the two sides.

Not only is the gas volume V_0 a decisive factor but also the connection size of the pump has to be taken into account when selecting the pulsation damper. In order to avoid additional variations in cross-section, which represent reflection points for vibrations, and also to keep pressure drop to a reasonable level, the fitting cross-section of the damper must be the same as that of the pipeline.

The gas volume V_0 of the damper is determined with the aid of the formula for adiabatic changes of state.

By giving the residual pulsation or the gas volume, the damper size can be dimensioned with the aid of the HYDAC software **ASP** (Accumulator Simulation **P**rogram).

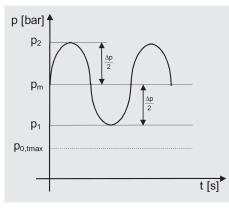
Designations:

$$\Delta V = \text{fluctuating} \\ \text{fluid volume [I]} \\ \Delta V = m \cdot q \\ q = \text{stroke volume [I]} \\ q = \frac{\pi \cdot d_{\kappa}^{2}}{4} \cdot h_{\kappa}$$

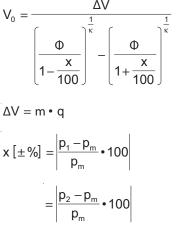
$$n_k = piston stroke [dm]$$

m = amplitude factor

m = amplitude factor
m =
$$\Delta V$$

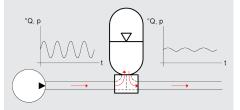

Ζ

x = residual pulsation $[\pm \%]$

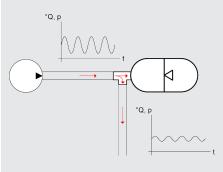

 κ = isentropic exponent

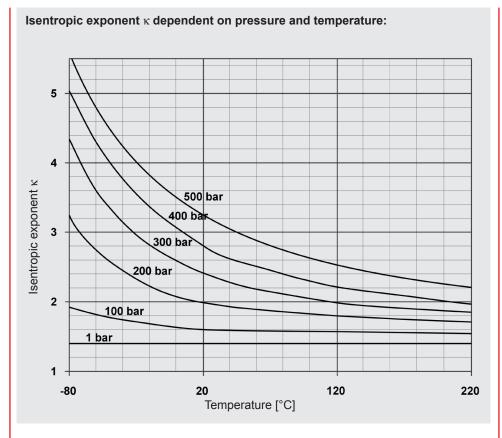
 $\Phi = \text{pressure ratio of} \\ \text{pre-charge pressure to} \\ \text{operating pressure [0.6 to 0.9]} \\ \Phi = \frac{P_0}{P_0}$

 $\Delta p = cyclic test pressure$ $<math display="block">\Delta p = p_2 - p_1[bar]$



Formulae:




Diagram of mounting options:

Preferred installation configuration with maximum damping effect

Alternative installation configuration using standard accumulator with a T-piece with reduced damping effect

Amplitude factor (m) for piston pump:

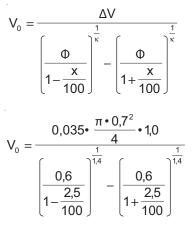
	m	value
z	single acting	double acting
1	0.550	0.250
2	0.210	0.120
3	0.035	0.018
4	0.042	0.010
2 3 4 5 6	0.010	0.006
6	0.018	0.001
7	0.005	
8	0.010	
9	0.001	
othe	rs on request	

others on request

3.1.1 Calculation example Given parameters: 9

Single-acting 3-piston pun	пр
Piston diameter:	70 mm
Piston stroke:	100 mm
Drive speed:	370 rpm
Flow rate:	427 l/min
Operating temperature:	20 °C
Operating pressure	
– pressure side:	200 bar
– suction side:	4 bar

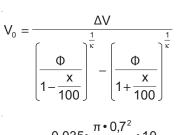
Required:

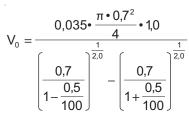

F

(

- a) Suction flow stabiliser for a residual pulsation of ± 2.5%
- b) Pulsation damper for a residual pulsation of ± 0.5%

Solution:

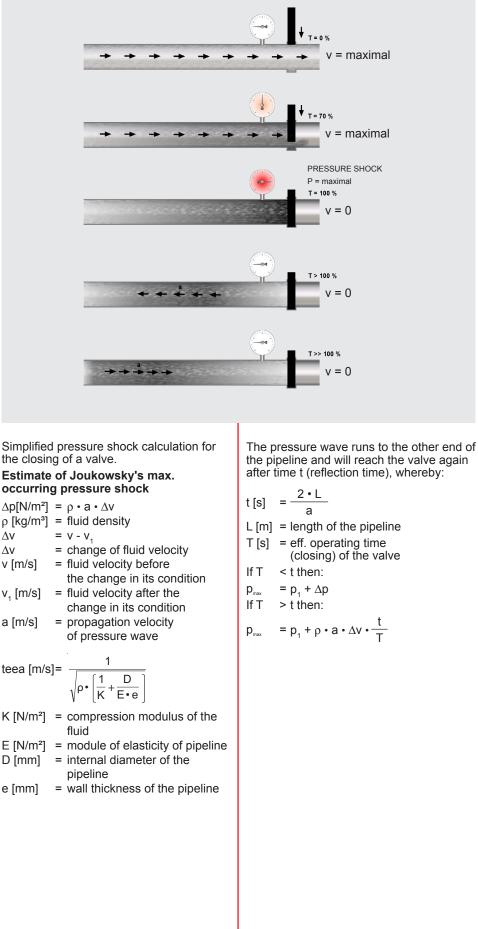

a) Determining the required suction flow stabiliser



 $V_0 = 0.54 I$

Selected: SB16S-12 with 1 litre gas volume

b) Determining the required pulsation damper



 $V_0 = 3.2 I$ Selected: SB330P-4

E 3.701.15/01.17

3.2. SHOCK ABSORBER

Pressure shock produced when a valve is closed without a hydraulic accumulator

Determining the required damper size

The accumulator must absorb the kinetic energy of the fluid by converting it into potential energy within the pre-determined pressure range. The change of state of the gas is adiabatic in this case.

$$V_{0} = \frac{\mathbf{m} \cdot \Delta \mathbf{v}^{2} \cdot \mathbf{0}, \mathbf{4}}{2 \cdot \mathbf{p}_{1} \cdot \left[\left[\frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} \right]^{1 - \frac{1}{\kappa}} - 1 \right] \cdot 10^{2}} \cdot \left[\frac{\mathbf{p}_{1}}{\mathbf{p}_{0}} \right]^{\frac{1}{\kappa}}$$

m [kg] = weight of the fluid in the pipeline v [m/s] = change in velocity of the fluid

 p_1 [bar] = zero head of the pump

p₂ [bar] = perm. operating pressure

p₀ [bar] = pre-charge pressure

A special calculation program to analyse the pressure curve is available for dimensioning during pump failure or start-up and for manifolds.

3.2.1 **Calculation example** Rapid closing of a shut-off valve in a re-fuelling line.

Given parameters: Length of the pipeline L: 2000 m Size of pipeline D: 250 mm Wall thickness of pipeline e: 6.3 mm Material of pipeline: Steel Flow rate Q: 432 m³/h = 0.12 m³/s Density of medium ρ : 980 kg/m³ Zero feed height of pump p1: 6 bar Min. operating pressure p_{min}: 4 bar Eff. closing time of the valve T: 1.5 s (approx. 20% of total closing time) Operating temperature: 20 °C Compression modulus of the fluid K: $1.62 \times 10^9 \text{ N/m}^2$ Module of elasticity (steel) E: $2.04\times10^{11}\ N/m^2$

Required:

Size of the required shock absorber, when the max. pressure (p_2) must not exceed 10 bar.

Solution:

Determination of reflection time: 1 a = √₽∙ [1] D $\left[\frac{1}{K} + \frac{1}{E \cdot e}\right]$ a = $\sqrt{980 \cdot \left[\frac{1}{1.62 \cdot 10^9} + \frac{250}{2.04 \cdot 10^{11} \cdot 6.3}\right]}$ a = 1120 m/s $t = \frac{2 \cdot L}{a} = \frac{2 \cdot 2000}{1120} = 3.575 \text{ s}^{*}$ * since T < t the max. pressure surge occurs and the formula as shown in section 3.2. must be used. Q ۷ = A $\frac{1}{0.25^2 \cdot \frac{\pi}{4}} = 2.45 \text{ m/s}$ $\Delta_{\rm p}$ $= \rho \cdot a \cdot \Delta v$ $\Delta_{\rm n}$ = 980 • 1120 • (2.45-0) • 10⁻⁵ = 26.89 bar $p_{max} = p_1 + \Delta_p$ $p_{max} = 6 + 26.89 = 32.89$ bar Determining the required gas volume: $p_0 \leq 0.9 \cdot p_{min}$ $p_0 \le 0.9 \cdot 5 = 4.5$ bar $V_{0} = \frac{m \cdot v^{2} \cdot 0.4}{2 \cdot p_{1} \cdot \left[\left(\frac{p_{2}}{p_{1}}\right)^{1-\frac{1}{\kappa}} - 1\right] \cdot 10^{2}} \cdot \left[\frac{p_{1}}{p_{0}}\right]^{\frac{1}{\kappa}}$ with $m = V \cdot \rho = \frac{\pi}{4} \cdot D^2 \cdot L \cdot \rho$ $V_{0} = \frac{\frac{\pi}{4} \cdot 0.25^{2} \cdot 2000 \cdot 980 \cdot 2.45^{2} \cdot 0.4}{2 \cdot 7 \cdot \left[\left[\frac{11}{7} \right]^{1 - \frac{1}{1.4}} - 1 \right] \cdot 10^{2}} \cdot \left[\frac{7}{4.5} \right]^{\frac{1}{1.4}}$ $V_0 = 1641 I$ Selected: 4 x shock absorbers SB35AH-450

82 HYDAC

4. TECHNICAL SPECIFICATIONS

4.1. EXPLANATIONS, NOTES

4.1.1 **Operating pressure**

See tables (may differ from nominal pressure for foreign test certificates).

4.1.2 Nominal volume see tables

4.1.3 Effective gas volume

See tables, based on nominal dimensions. This differs slightly from the nominal volume and must be used when calculating the effective fluid volume.

For diaphragm accumulators, the effective gas volume corresponds to the nominal volume.

4.1.4 Effective volume

Volume of fluid which is available between the operating pressures p_2 and p_4 .

4.1.5 Gas charge

Hydraulic accumulators must only be charged with nitrogen. Never use other gases. **Risk of explosion!**

In principle, the accumulator may only be charged with nitrogen class 4.0, filtered to < 3 $\mu m.$

If other gases are to be used, please contact HYDAC for advice.

When supplied, the accumulator is only pre-charged for storage purposes. Higher pre-charge pressures are possible by arrangement.

4.1.6 **Permitted pressure ratio**

Ratio of maximum operating pressure ${\bf p}_{\rm 2}$ to gas pre-charge pressure ${\bf p}_{\rm 0}$

See catalogue section:

 HYDAC Accumulator Technology No. 3.000

4.1.7 General safety instructions

On no account must any welding, soldering or mechanical work be carried out on the accumulator shell.

After the hydraulic line has been connected it must be completely vented. Work on systems with hydraulic dampers (repairs, connecting pressure gauges etc.) must only be carried out once the fluid pressure and the gas pre-charge pressure have been released.

Please read the operating instructions!

- Bladder accumulators No. 3.201.BA
- Diaphragm accumulators No. 3.100.BA
- Piston accumulators No. 3.301.BA

4.1.8 Working temperature and operating fluid

The permitted working temperature of a hydraulic damper is dependent on the application limits of the metal materials and the separation element. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materia	als		r	Temperature range	Overview of the fluids ²⁾	
		Material code ¹⁾	Accumulator type		Resistant to	Not resistant to
NBR	Acrylonitrile butadiene rubber	2	SB, SBO	-15 °C + 80 °C	 Mineral oil (HL, HLP) Flame-retardant fluids from the 	Aromatic hydrocarbons Chlorinated hydrocarbons
		5	SB, SBO	-50 °C + 50 °C	groups HFA, HFB, HFC • Synthetic ester (HEES)	(HFD-S) • Amines and ketones
		9	SB, SBO	-30 °C + 80 °C	● Water ● Sea water	Hydraulic fluids of type HFD-RFuels
ECO	Ethylene oxide epichlorohydrin rubber	3	SB	-30 °C +120 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the HFB group Synthetic ester (HEES) Water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R
			SBO	-40 °C +120 °C	● Sea water	 Flame-resistant fluids from the groups HFA and HFC Fuels
IIR	Butyl rubber	4	SB	-50 °C +100 °C	Hydraulic fluids of type HFD-R Flame-resistant fluids from the	 Mineral oils and mineral greases Synthetic ester (HEES)
			SBO	-50 °C +120 °C	● group HFC ● Water	 Aliphatic, chlorinated and aromatic hydrocarbons Fuels
FKM	Fluorine rubber	6	SB, SBO	-10 °C +150 °C	 Mineral oil (HL, HLP) Hydraulic fluids of type HFD, Synthetic ester (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Amines and ketones Ammonia Skydrol and HyJet IV Steam

¹⁾ see section 4.2. Model code, material code, accumulator bladder/diaphragm

2) others available on request

4.2. MODEL CODE

Pulsation damper, suction flow stabiliser, shock absorber Not all combinations are possible. Order example. For further information, please contact HYDAC.

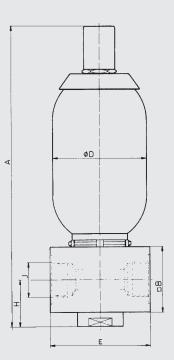
	<u>SB3</u>	<u>30</u>	<u>P</u> –	<u>10</u>	A :	<u>1/1</u>	112	Ų	– <u>3:</u>	<u>30</u>	<u>AI</u>
Series											
SB = with bladder SBO = with diaphragm											
Type code											
A= shock absorberAH= high flow shock absorberP= pulsation damperPH= high flow pulsation damperS= suction flow stabiliser											
Nominal volume [I]											
Fluid connection											
 A = threaded connection E = threaded connection for weld type construction (diaphragm accumulators only) F = flange ¹) 											
Type code											
 standard model (not for screw type diaphragm accumulators or shock absorbers) back-up type ²⁾ standard model for screw type diaphragm accumulators type SBOPA6 											
Material code											
dependent on operating medium standard model = 112 for mineral oils											
Fluid connection											
 = carbon steel = high tensile steel = stainless steel ³ + chemically nickel-plated (internal coating) ² = low temperature steel = other materials 											
Accumulator shell											
0 = plastic (internal coating) ²⁾ 1 = carbon steel 2 = chemically nickel-plated (internal coating) ²⁾ 4 = stainless steel ²⁾³⁾ 6 = low temperature steel 7 = other materials											
Accumulator bladder 4)/diaphragm											
$2 = NBR^{5}$ $3 = ECO$ $4 = IIR$ $5 = NBR^{5}$ $6 = FKM$ $7 = other materials (e.g. PTFE, EPDM,)$											
Certification code											
U = European Pressure Equipment Directive (PED)											
Permitted operating pressure [bar]											
Connection											

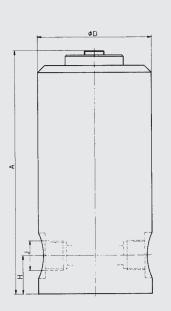
- **Connection**
- AI = ISO 228 (BSP), standard connection BI = DIN 13 to ISO 965/1 (metric) ¹⁾ CI = ANSI B1.1 (UNF thread, sealing to SAE standard) ¹⁾ DI = ANSI B1.20 (NPT thread) ¹⁾

SBO250P-0,075E1 and for SBO210P-0,16E1:

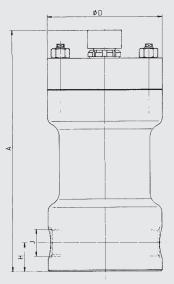
AK = ISO 228 (BSP), standard connection

¹⁾ specify full details of version


- ¹⁷ specify full details of version
 ²⁰ not available for all versions
 ³⁰ dependent on type and pressure level
 ⁴¹ when ordering a replacement bladder, state diameter of smallest shell port
 ⁵⁰ observe temperate ranges, see section 4.1.8


E 3.701.15/01.17

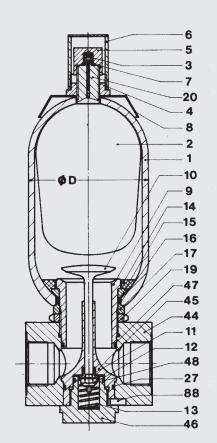
4.3. DIMENSIONS AND SPARE PARTS


4.3.1 Pulsation dampers bladder accumulator

SB330/550P(PH)-...

SB800P-...

SB1000P-...

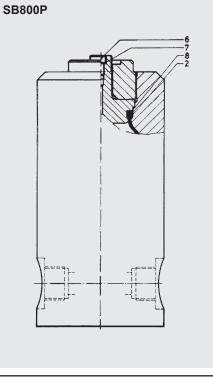

Dimensions SB

Nominal volume	max. operating pressure	Eff. gas	Weight	A	□В	ØD	E	Н	J ²⁾ Thread	Series
[I]	(PED) [bar]	volume [l]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228	
1	330	- 1	11	365	80	118	120	57		SB330P
I	550		13	384	70	121	120	53	G 1 1/4	SB550P
1.5	800 ³⁾	- 1.3	36	346	-	160	- 55			SB800P
1.5	1000 ³⁾	1.3	94	414	-	215	-	49	1)	SB1000P
2.5	330	2.4	16	570	80	118		57		SB330P
2.5	550	2.5	20	589	70	121	120	53	G 1 1/4	SB550P
4	330	3.7	18	455	80	171		57		SB330P
4	330	3.7	26	491	100		150	85	G 1 1/2	SB330PH
5	550	4.9	26	917	70	121	120	53	G 1 1/4	SB550P
6		5.7	20	559	80	171	120	57	G T 1/4	SB330P
0	330	5.7	28	593	100			85	G 1 1/2	SB330PH
10	- 330	9.3	40	620	100			65	GT 1/2	SB330P
10		9.3	50	652	130x140]		100	SAE 2" - 6000 psi	SB330PH
13		12	48	712	100]		95	0 1 1/2	SB330P
20	330	10 /	70	920	- 100	229	150	85	G 1 1/2	SB330P
20		18.4	80	952	130x140	229		100	SAE 2" - 6000 psi	SB330PH
24		23.6	82	986	- 100			85	G 1 1/2	SB330P
32	330	33.9	100	1445				60	G T 1/2	SB330P
32		33.9	110	1475	130x140			100	SAE 2" - 6000 psi	SB330PH

M56x4, high pressure connection DN 16, others on request
 standard connection code = AI, others on request
 special design, on request

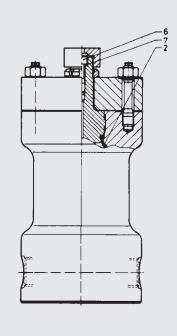
Spare parts

SB...P


Description Item	
Bladder assembly*	
consisting of:	
Bladder	2
Gas valve insert	3
Retaining nut	4
Cap nut	5
Protective cap	2 3 4 5 6
O-ring	7
Seal kit*	
consisting of:	
O-ring	7
Washer	15
O-ring	16
Support ring	23
O-ring	27
O-ring	47
O-ring	48
Anti-extrusion ring*	14
Gas valve insert*	3
* recommended spares	

Description	Item
Connection assembly consisting of:	
Oil valve body	9
Valve plate	10
Damping sleeve	11
Lock nut	12
Spring	13
Anti-extrusion ring	14
Washer	15
O-ring	16
Spacer	17
Lock nut	19
Support ring (only for 330 bar)	23
O-ring	27
Connector	44
Guide piece	45
Сар	46
O-ring	47
O-ring	48
Locking key	88

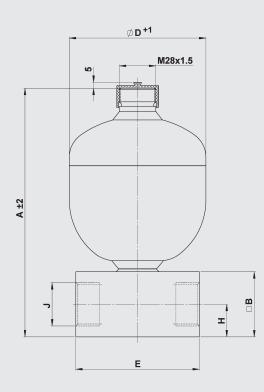
O-ring dimensions (mm)

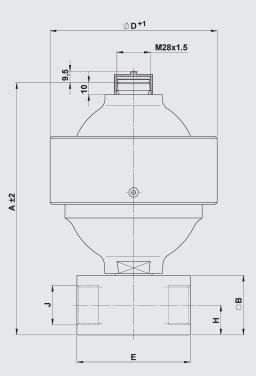

<u>o ning ann</u>						
Series	Nom. volume	Item 7	Item 16	Item 27	Item 47	Item 48
SB330P	1-61	7.5x2	55x3.5 ¹⁾	42.2x3 ¹⁾	46x3 ¹⁾	24.2x3 ¹⁾
SB550P	1-51	7.5x2	50.17x5.33 ¹⁾	37.82x1.78 ¹⁾	40.94x2.62 ¹⁾	23.52x1.78 ¹⁾
SB330P/PH	10-32 l/4+6 l	7.5x2	80x5 ¹⁾	57.2x3 ¹⁾	67.2x3 ¹⁾	37.2x3 ¹⁾
SB330PH	10-32 l	7.5x2	100x5 ¹⁾	64.5x3 ¹⁾	84.5x3 ¹⁾	44.2x3 ¹⁾
1) for code 663 an	d 665 different dimens	sions				

¹⁾ for code 663 and 665 different dimensions

DescriptionItemBladder2Charging screw6Seal ring U 9.3x13.3x17Support ring8

SB1000P

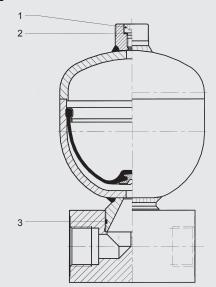



Description	Item
Bladder	2
Charging screw	6
Seal ring	7

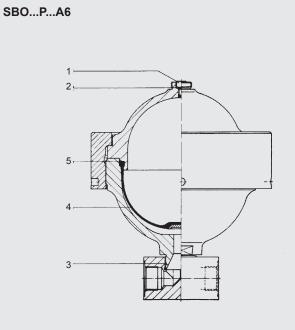
4.3.2 Pulsation dampers diaphragm accumulator

SBO...P...E

Dimensions SBO

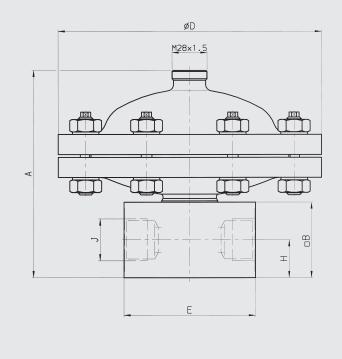

Nominal volume	Max. opera pressure (Weight	а	□В	ØD	E	Н	J thread	Series and connection type ¹⁾	n					
[1]	Carbon steel [bar]	Stainless stee [bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228							
0.075	250	_	0.9	131	-	64	11 hov	10	0.1/4	SBO250PE1AK						
0.16		180	1	143	-	74	41 hex.	13	G 1/4	SBO210PE1AK	1					
0.32	210	160	2.6	175	- 50	93	80	25	0.1/2		1					
0.5		_	3	192	- 50	105	80	25	G 1/2	SBO210PE1AI						
0.6	330	-	5.6	222		115						SBO330PE1Al	1			
0.75	210	140	5.1	217		121	105			SBO210PE1AI]					
1	200	_	6	231		136				SBO200PE1AI	be					
	140	-	6.2	244		145		30		SBO140PE1AI	weld-type					
1.4	210	-	7.7	250		150				SBO210PE1AI	Me					
	250	_	8.2	255	60	153				SBO250PE1Al						
2	100	100	6.3	261		160	1			SBO100PE1AI						
2	210	-	8.9	267		167				SBO210PE1AI	1					
3.5	250	_	13.5	377		170			SBO250PE1AI	1						
4		50	7.9	368		158				SBO50PE1Al	1					
4	-	250	13.5	377		170				SBO250PE1AI	1					
0.25	500	350	5.2 (6.3)	162	50	115 (125)	80	25	G 1/2	SBO500PA6AI						
0.6	450	250	8.9 (9.1)	202		140 (142)	95	25		SBO450PA6AI	e					
1.3	400	-	13.8	267		199				SBO400PA6AI	l-typ					
2	250	180	15.6	285	60	201	105 3	1.05	105	105	105	105	20	G 1	SBO250PA6AI	thread-type
2.8	400	_	24.6	308		252	105	30]₽						
4	400	_	36.6	325	7	287]			SBO400PA6AI						

¹⁾ standard connection code = AK or AI, others on request
 () brackets indicate different dimensions for stainless steel version


E 3.701.15/01.17

Spare parts

SBO...P...E


Description	Item
Charging screw	1
Seal ring	2
Seal ring	3

Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4
Support ring	5

4.3.3 Pulsation dampers for aggressive media

SBO...P-...A6/347...(PTFE)

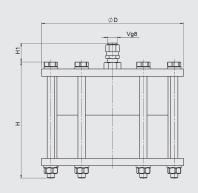
Pulsation damper in stainless steel with PTFE coated diaphragm. Also available without connection block.

Permitted operating temperature: -15 $^\circ C$... +80 $^\circ C$

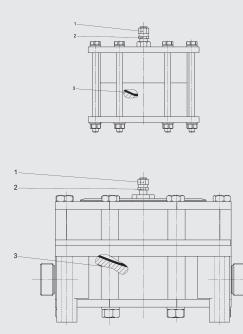
Permitted pressure ratio $p_2 : p_0 = 2 : 1$

Dimensions

Nominal volume	Max. operating pressure (PED)	Weight	A	Β	ØD	E	Н	J ¹⁾ Thread
[I]	[bar]	[kg]	[mm]	[mm]	[mm]	[mm]	[mm]	ISO 228
0.0	40	11	140		210			
0.2	250	27	197		230	105	20	0.1
0.5	40	12	165	60	210	105	30	G 1
0.5	250	26	200		230			

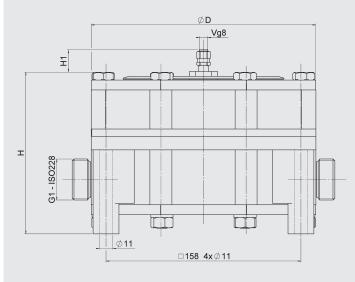

¹⁾ standard connection code = AI, others on request

Spare parts SBO...P-...A6/347...(PTFE)


Description	Item
Charging screw	1
Seal ring	2
Seal ring	3
Diaphragm	4

SBO...(P)-...A4/777... (PVDF/PTFE)

Figure 1


SBO...(P)-...A4/777... (PVDF/PTFE)

Description	Item
Gas valve complete	1
Gas valve insert brass / stainless steel	2
Diaphragm	3

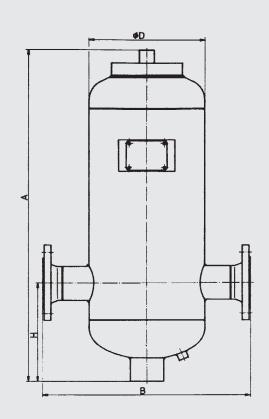
Relevant operating instructions are available on request.

Figure 2

Pulsation damper in PVDF with PTFE-coated diaphragm.

Permitted operating temperature: -10 °C ... +65 °C

Permitted pressure ratio $p_2 : p_0 = 2 : 1$

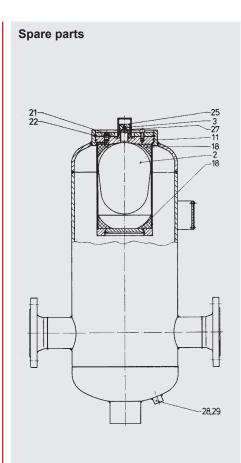

Dimensions

Nominal volume	Max. operating pressure (PED)	Weight	ØD	Η	H1	Figure
[1]	[bar]	[kg]	[mm]	[mm]	[mm]	
0.08	10	1.5	115	94	15	1
	10	5.7		128	20	
0.2	16	6.4		130	18	
	25	0.4	100	130	10	
	10	6	182	168	20	2
0.5	16	6.0		170	10	
	25	6.8		170	19	

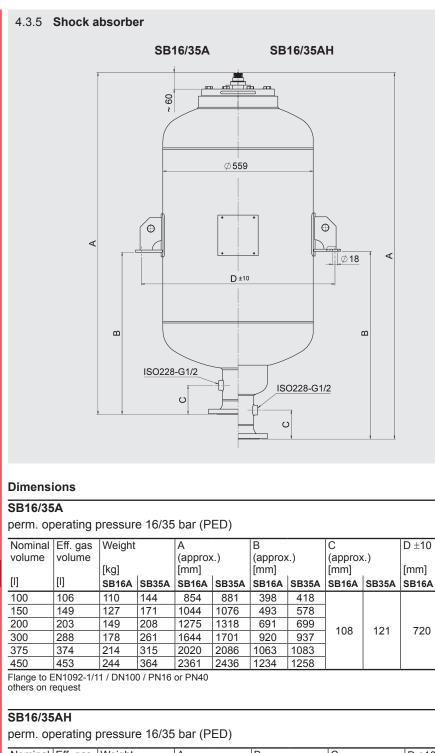
E 3.701.15/01.17

4.3.4 Suction flow stabiliser

SB16S

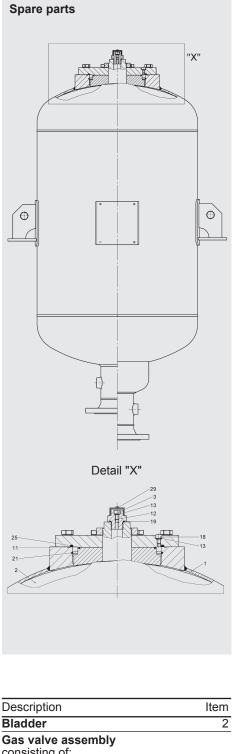


Dimensions


SB16S -	SB16S – permitted operating pressure 16 bar (PED)							
Nominal volume	Fluid volume	Eff. gas volume	Weight	A	В	ØD	Н	DN*
[1]	[1]	[I]	[kg]	[mm]	[mm]	[mm]	[mm]	
12	12	1	40	580	425	219	220	65
25	25	2.5	60	1025	425	219	220	05
40	40	4	85	890	540	300	250	80
100	100	10	140	1150	650	406	350	100
400	400	35	380	2050	870	559	400	125

further pressure ranges 25 bar, 40 bar; others on request other fluid volumes on request

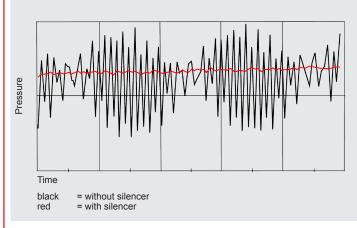
* to EN1092-1/11 /B1/PN16


Description	Item
Bladder	2
Gas valve insert	3
O-ring	11
Insertion ring, 2x	18
Lock nut	21
Retaining ring	22
Cap nut	25
O-ring	27
Seal ring	28
Lock nut	29

Nominal	Eff. gas	Weight		A		В		С		D ±10			
volume	volume			(approx.)		(approx.)		(approx	.)				
		[kg]	kg]		[kg]		[mm]		[mm]			[mm]	
[I]	[I]	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH	SB16AH	SB35AH		
100	106	118	153	945	971	488	508						
150	149	135	180	1135	1166	638	641						
200	203	157	217	1366	1408	754	762	108	121	720	728		
300	288	186	270	1735	1791	988	1000	100	121	/20	120		
375	374	222	324	2111	2176	1127	1146						
450	453	252	373	2452	2526	1298	1321						

Flange to EN1092-1/11 / DN100 / PN16 or PN40 others on request

E 3.701.15/01.17


SB35A

728

~
3
12
13
19
29
11
13
18
19
21
25
t

5. SILENCER

5.1. APPLICATION Silencer for fluid noise damping Type SD...

5.1.1

General

All displacement pumps, such as axial and radial piston pumps, vane, gear or screw pumps produce volume and pressure fluctuations which are exhibited as vibrations and noises. Noises are not only generated and transmitted by the pump. They are also the result of mechanical vibrations and vibrations caused by the fluid pulsations, which are amplified when transmitted to larger surfaces. Insulation and the application of flexible hoses or sound insulation caps resolve only part of the problem, since they cannot prevent the effects of the pulsations being transferred to other areas.

5.1.2 Applications

Vehicles, machine tools, plastics machinery, aeroplanes, ships, hydraulic power stations and other systems with a large "surface" are all applications where the noise level can be reduced.

5.1.3 Mode of operation

The HYDAC fluid SILENCER is based on the principle of an expansion chamber with interference line.

By reflecting the oscillations within the silencer the majority of the oscillations are dampened across a wide frequency spectrum.

5.1.4 Design

The HYDAC SILENCER consists of a welded or forged external housing, an internal tube and two pipe connections on opposite sides.

The SILENCER has no moving parts and no gas charge and is therefore absolutely maintenance free.

The HYDAC SILENCER can be used for mineral oils, phosphate ester and water glycol. A stainless steel model is available for other fluids.

5.1.5 Special design

SILENCERS can also be in the form of diaphragm or piston accumulators. Available on request.

5.1.6 Installation

It is recommended that one connection side is joined via a flexible hose in order to reduce the transmission of mechanical vibrations. The installation position of the damper is optional, but the flow direction must be taken into account.

Please read the operating instructions! No. 3.701.BA

5.2. DIMENSIONING

Silencer

The sizing calculation of the HYDAC SILENCER is designed to result in a small unit with the best possible damping. The starting point for the selection table is to determine the level of transmission damping D from 20 dB upwards.

$$D = 20 \cdot \log \frac{\Delta p_o}{\Delta p_m}$$

 Δp_{o} = cyclic test pressure without silencer

 Δp_m = cyclic test pressure with silencer

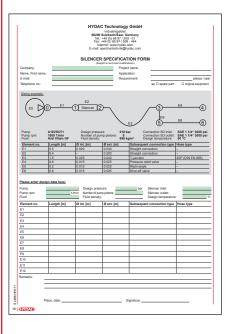
When selecting the damper the following has to be taken into account:

- 1) the size of the silencer body
- 2) the fundamental frequency f of the pump
 - f = i n / 60 in Hz
 - i = number of displacement elements
 - n = motor speed in rpm

5.2.1 Calculation example

Given parameters:

Axial piston pump with 9 pistons Drive speed: 1500 rpm Connection: G1 corresponds to D_i = 19 mm Flow rate: 300 l/min Operating medium: mineral oil max. operating pressure: 210 bar


Solution:

f

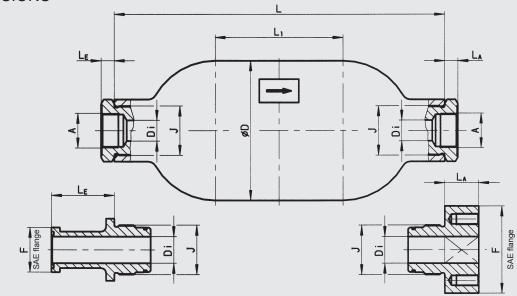
Fundamental frequency f

By calculating the fundamental frequency and using the system data (e.g. pipe length, ball valves, pressure, temperature, etc.) we can determine the correct size of silencer for you. Use the specification sheet to provide the required data quickly and conveniently on the PC and send it to us. See www.hydac.com or catalogue section

 HYDAC Accumulator Technology No. 3.000

5.3. MODEL CODE

Not all combinations are possible. Order example. For further information, please contact HYDAC.


	<u>SD330 M – 4,2 / 212 U – 330 AD/AD</u>
Series	
Type code no details = for SD330 B = bladder accumulator base shell* K = piston accumulator base shell* M = diaphragm accumulator base shell*	
Nominal volume [I]	
Damper0= without pipe1= damper for frequencies > 500 Hz2= narrow band damper - DR3= broadband damper - DR	
Housing material 1 = carbon steel 2 = carbon steel with rust protection*	
Material of seal 2 = NBR (-15 °C + 80 °C) 6 = FKM (-10 °C + 160 °C)	
Certification code U = European Pressure Equipment Directive (PED)	
Permitted operating pressure [bar]	

Inlet connection/outlet connection see Table 5.4.1

* only on request

5.4. DIMENSIONS

SD330

Nominal volume [I]	L [mm]	L ₁ [mm]	Ø D [mm]	J ISO 228	Weight [kg]
1.3	250	-	111	G 1	6.5
1.8	355	155	114	G 1 1/4	5.5
4.2	346	-	168	G 1 1/2	12.5
4.7	420	155	100	G 2	11.4

5.4.1 Silencer connections

a) Threaded connection to ISO 228

						F	luid con	nection	Α					
	A	В	A	С	A	D	A	E	A	F	A	G	G	G
	G	3/8	G	1/2	G	3/4	G	1	G 1	1/4	G 1	1/2	G 1	1/2
	D _i = 1	15 mm	D _i = 1	3 mm	D _i = 1	16 mm	D _i = 1	9 mm	$D_i = 2$	25 mm	$D_i = 3$	32 mm	Di	= J
Nominal volume [l]	L _E [mm]	L _A [mm]												
1.3	17	17	-	_		_	-		-	_	-	_	-	_
1.8	-	_	13	13	13	13	30	30	33	33	-		-	_
4.2	-	_	-	-		_	-	_	-	_	-	_	Without	adapter
4.7	-	_	-	_	16	16	16	16	26	26	36	36	36	36

b) Flange connection SAE J518 (Code 62 - 6000 psi)

						Fluid co	nnection F	-			
	F	G	F	Н	F	-1	F	K	F	L	FM
	SAE	1/2"	SAE	3/4"	SAE	E 1"	SAE	1 1/4"	SAE	1 1/2"	SAE 2"
Nominal	D _i = 1	3 mm	D _i = 1	9 mm	D _i = 2	25 mm	D _i = 3	82 mm	D _i = 3	88 mm	D _i = 50 mm
volume [l]	L _E [mm]	L _A [mm]	L _E [mm] L _A [mm]								
1.3	-	-	-	_	-	-	-	_	-	_	-
1.8	53	31	59	36	65	36	-	_	-	_	-
4.2	-	-	-	-	-	_	-	_	0	33	-
4.7	-	_	105	36	120	36	76	28	76	28	*
and evellette											

not available
* on request

6. NOTE

The information in this brochure relates to the operating conditions and applications described. For applications and operating conditions

For applications and operating conditions not described. please contact the relevant technical department. Subject to technical modifications. HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: 0049 (0) 68 97 / 509 - 01 Fax: 0049 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

E 3.701.15/01.17

DAC INTERNATIONAL Accumulator stations

GENERAL 1.

HYDAC supplies fully assembled piston accumulator stations which are ready for operation, complete with all the necessary valve controls, ball valves and safety equipment

- as an individual accumulator unit or
- in a back-up version with nitrogen bottles to increase the effective volume.

The HYDAC system approach creates a HYDAC system of, for example, bladder or piston accumulator stations, by integrating individual HYDAC components.

An accumulator station can be composed of

- piston accumulators with nitrogen bottles.
- bladder accumulators with nitrogen bottles or
- nitrogen bottles alone.

The modular design of the accumulator stations enables HYDAC to incorporate all customer requirements. HYDAC can calculate the required accumulator volumes taking the customer's own operating data into account using the accumulator dimensioning program:

ASP – Accumulator Simulation Program.

Please read the relevant operating instructions for the individual HYDAC components!

MODEL CODE 2.

(also order example)

Type of accumulator SS = accumulator station

Max. operating pressure [bar]

Series

- = piston accumulator Κ
- В = bladder accumulator
- Ν = nitrogen bottles

Number of accumulators

Nominal volume [I] of the accumulators

Number of nitrogen bottles

Nominal volume [I] of the nitrogen bottles

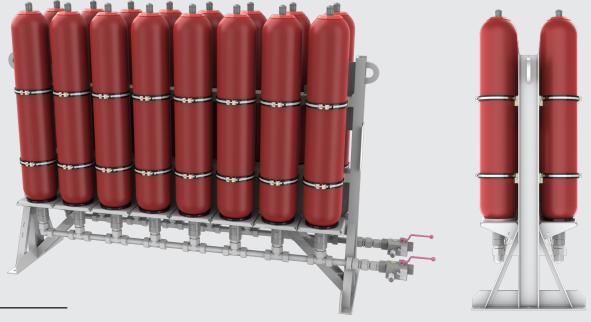
Certification code

(U) = European Pressure Equipment Directive (PED)

Piston accumulators and nitrogen bottles are connected up via a manifold block or pipework

<u>SS 350 K - 4 x 250 / 12 x 320 (U)</u>

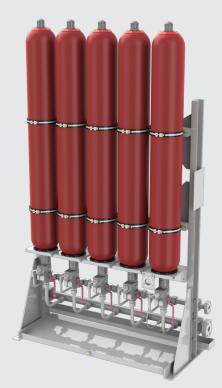
HYDAC 97


3. EXAMPLES OF ACCUMULATOR STATIONS

3.1. BLADDER ACCUMULATOR STATIONS

EXAMPLE: SS330B-16x32(U)

Technical specifications:


16 bladder accumulators, each with a volume of 32 l max. operating pressure: 330 bar

Dimensions					
Length	Width	Height			
[mm]	[mm]	[mm]			
2780	660	1950			

EXAMPLE: SS330B-5x50(U)

Technical specifications: 5 bladder accumulators, each with a volume of 50 l max. operating pressure: 330 bar

Dimensi	Dimensions					
Length	Width	Height				
[mm]	[mm]	[mm]				
1640	600	2750				

3.2. PISTON ACCUMULATOR STATIONS

EXAMPLE: SS350K-1x110/8x50(U)

Technical specifications: 1 piston accumulator, volume 110 I 8 N_2 bottles, each with a volume of 50 I max. operating pressure: 350 bar

Dimensions					
Length [mm]	Width [mm]	Height [mm]			
1540	900	3300			

EXAMPLE: SS220K-1x120/1x75(U)

Technical specifications: 1 piston accumulator, volume 120 I 1 N_2 bottle, volume 75 I max. operating pressure: 220 bar

Dimensions					
	Width	Height			
[mm]	[mm]	[mm]			
520	800	3500			

EXAMPLE: SS210K-1x110/2x50(U)

Technical specifications: 1 piston accumulator, volume 110 I 2 N_2 bottles, each with a volume of 50 I max. operating pressure: 210 bar

Dimensions			
Length [mm]	Width [mm]	Height [mm]	
950	475	2840	

EXAMPLE: SS350K-1x200/2x110(A9)

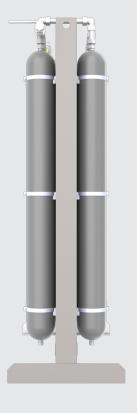
Technical specifications: 1 piston accumulator, volume 200 l 2 $N_{\rm 2}$ bottles, each with a volume of 110 l max. operating pressure: 350 bar

Dimensions				
Length	Width	Height		
[mm]	[mm]	[mm]		
1250	550	2900		

3.3. NITROGEN BOTTLES

Nitrogen bottles in modular construcion:

up to 24 bottles can be assembled on a frame in this version. For a larger quantity, a special design can be supplied.


See catalogue section:

 Hydraulic accumulators with back-up nitrogen bottles No. 3.553

EXAMPLE: SS350N-16x75(U)

Technical specifications: 16 $N_{\rm 2}$ bottles, each with a volume of 75 I max. operating pressure: 350 bar

Dimensions			
Length	Width	Height	
[mm]	[mm]	[mm]	
2440	900	3000	

4. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

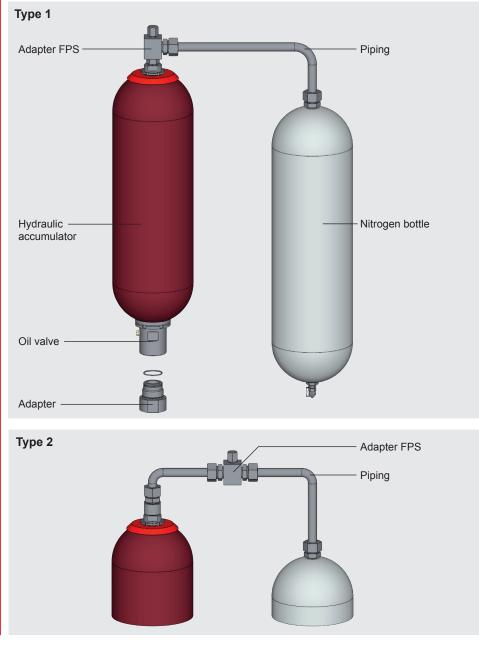
HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAD INTERNATIONAL

Hydraulic Accumulators with Back-Up Nitrogen Bottles

1. GENERAL

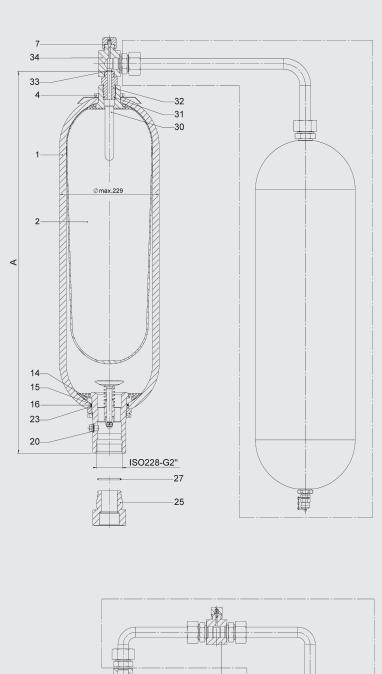
To complete the accumulator range, HYDAC provides a variety of useful accessory products. They guarantee correct installation and optimum functioning of HYDAC hydraulic accumulators. They include nitrogen bottles which can be used to back up bladder and piston accumulators. Nitrogen bottles used as back-ups increase the gas volume in the accumulator. This means that smaller accumulators can be used for the same gas volume and costs can be reduced.

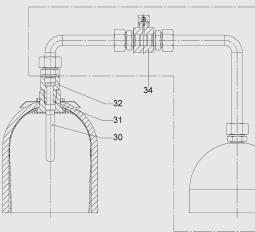

For further information, please turn to the sections:

- Bladder Accumulators Standard No. 3.201
- Piston Accumulators Standard No. 3.301

2. BACK-UP VERSIONS

2.1. SET-UP USING THE EXAMPLE OF A BLADDER ACCUMULATOR


Based on bladder accumulator models 20 ... 50 I, the gas-side of these transfer accumulators is designed especially for connecting to nitrogen bottles. A diffuser rod prevents damage to the bladder when the accumulator is charged. This design can also be used for the separation of fluids (taking into account the volume ratios which apply to bladder accumulators).


HYDAC | 103

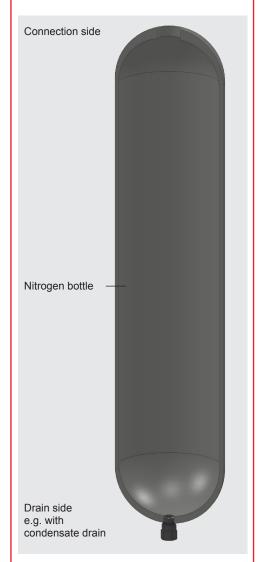
E 3.553.4/01.17

2.2. DIMENSIONS

Type 2

Nominal volume [l]	Effect. gas volume [I]	Weight [kg]	A max. [mm]
20	17.5	53.5	905
24	24	72	1070
32	32.5	89	1420
50	47.5	119.5	1930

2.3. SPARE PARTS


NBR, carbo	on steel, sta	indard gas	valve		
Nominal					
volume of		Type 1	Type 2		
accum.					
[1]	Part no.	Part no.	Part no.		
20		3119500	3897464		
24	353621	3119502	3897463		
32	353021	3119498	3897462		
50		3119499	3897461		
Descriptio	n		Item		
Bladder a consisting	assembly of:				
Bladde	er		2		
Lock r	nut		4		
Diffuse	er rod		30		
O-ring	22x2.5 1)		31		
Adapte	er for Type	1/2	32		
Seal kit consisting	l of				
	7.5x2 ¹⁾		7		
	Washer 15				
	O-ring 80x5 ¹) 16				
	Seal ring 20				
	up ring		23		
	48x3 ¹⁾		27		
Repair ki	t				
	er assembly	(see abov	e)		
	it (see abov		,		
	11x2 ¹⁾		33		
Anti-extru	usion ring		14		
Adapter I	FPS for Typ	e 1/2 2)	34		
Recommende	d spare parts				
	3 and 665 diffe	rent dimensio	ns		
²⁾ see section Item 1 not av		are part.			
Item 1 not available as a spare part. Item 25 must be ordered separately, see Bladder Accumulator Standard, No. 3.201 (Section 4.2.)					
Item 32 Type		-,			
for other spare	e parts, see see	ction 3.			

E 3.553.4/01.17

others on request

NITROGEN BOTTLES 3.

3.1. DESCRIPTION AND DESIGN

HYDAC nitrogen bottles are used for the receiving and storage of nitrogen.

HYDAC supplies various versions, such as standard nitrogen bottles made from forged vessels and special vessels based on bladder accumulator shells (SN...B), piston accumulator tubes (SN...K) and diaphragm accumulator halves (SN...M), see catalogue section:

- Bladder Accumulators Standard No. 3.201
- Piston Accumulators, Standard No. 3.301
- Diaphragm Accumulators No. 3.100

The following technical specifications refer to standard nitrogen bottles. Please ask us for information regarding other versions.

3.2. ADVANTAGES

The use of HYDAC nitrogen bottles provides the following benefits:

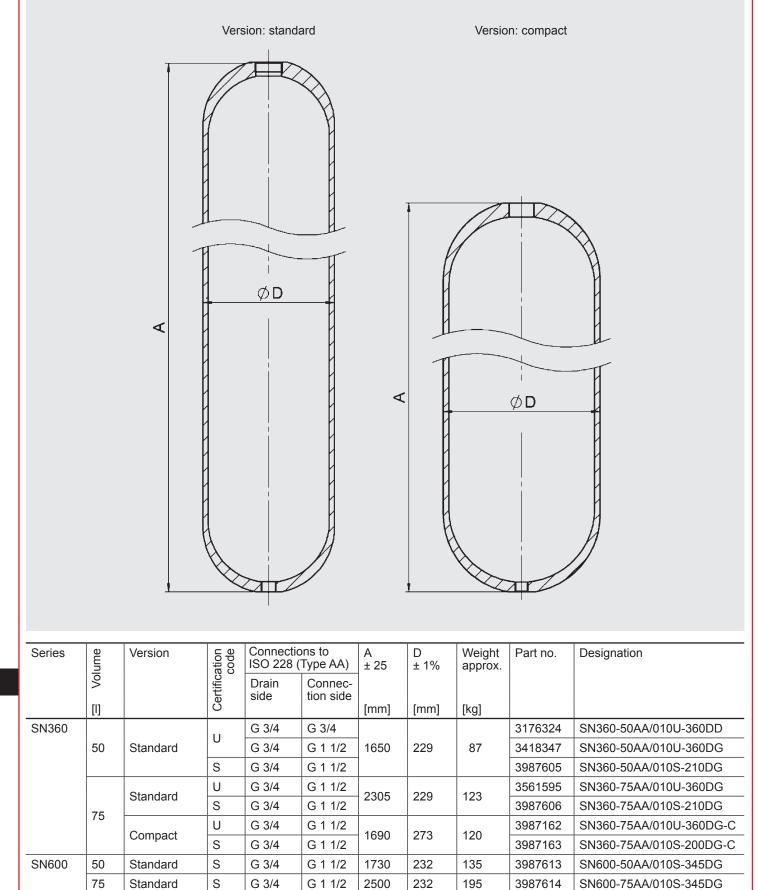
- Cost-effective increase of the accumulator volume and as a result
- smaller accumulators for the same gas volume.

 3.3. TECHNICAL SPECIFICATIONS 3.3.1 Model code Not all combinations are possible. 	
Order example. For further information, please contact HYDAC	
Series Code no details = standard special types (see section 3.1.) Nominal volume [I] Connection type Version, drain side (condensate) A = ISO 228 (BSP) B = DIN 13 to ISO 965/1 (metric) C = ANSI B1.1 (UNF seal SAE) D = ANSI B2.1 F = flange 1 = sealed with blanking plug 2 = with condensate drain, hex. socket cap screw 3 = with condensate drain, hex. socket cap screw 3 = with condensate drain valve 4 = with Minimess valve Connection type on connection side A = ISO 228 (BSP) B = DIN 13 to ISO 965/1 (metric) C = ANSI B1.1 (UNF seal SAE) D = ANSI B2.1 F = flange Material code Material code Material code Material code Material code Material code 3 = stainless steel ¹⁰ 4 = carbon steel 3 = stainless steel ¹⁰ 4 = carbon steel 2 = carbon steel 3 = stainless steel ¹⁰ 6 = low temperature steel	60 D G - C

Size for drain side (see Table 3.3.2) Size for connection side (see Table 3.3.2) 0 = for type 1–4

Version

- no details = standard C = compact
- ¹⁾ dependent on type and pressure level


3.3.2 Connections

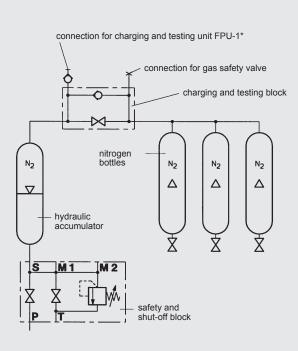
Standard connections are highlighted in grey.

All other designs	available on	request	(not all	combinations	are possible).

All other designs available of request (not all combinations are possible).					
Design	A BSP ISO228	B metric DIN13 ISO965/1	C SAE ANSI B1.1	D NPT ANSI B2.1	F Flange connection
а	G 1/4"	M12x1.5	7/16"-20UNF	1/4"	1/2" 3000 psi Code 61
W	G 3/8"	M18x1.5	9/16"-18UNF	3/8"	3/4"
С	G 1/2"	M22x1.5	3/4"-16UNF	1/2"	1"
C D E F	G 3/4"	M27x2	1 1/16"-12UN	3/4"	1 1/4"
E	G 1"	M33x2	1 5/16"-12UN	1"	1 1/2"
F	G 1 1/4"	M42x2	1 5/8"-12UN	1 1/4"	2"
G	G 1 1/2"	M48x2	1 7/8"-12UN	1 1/2"	1/2" 6000 psi Code 62
Н	G 2"	M14x1.5	2 1/2"-12UN	2"	3/4"
1	G 1 3/4"	M8	-	-	-
K	-	M16x1.5	-	-	1 1/4"
L	-	-	7/8"-14UNF	5/8"	1 1/2"
Μ	-	-	-	-	2"
S	Special version				

E 3.553.4/01.17

4. ACCESSORIES

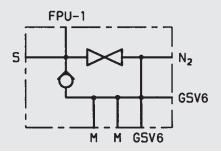

4.1. CHARGING AND TESTING BLOCK F + P

4.1.1 Description

The HYDAC charging and testing block F+P is used to charge and test back-up type hydraulic accumulators. It has connections for the charging and testing unit FPU-1 and for pressure gauges. As a safety function, a gas safety valve GSV6 (see catalogue section given below) can be fitted. In addition, it allows the back-up nitrogen bottles to be shut off from the hydraulic accumulator.

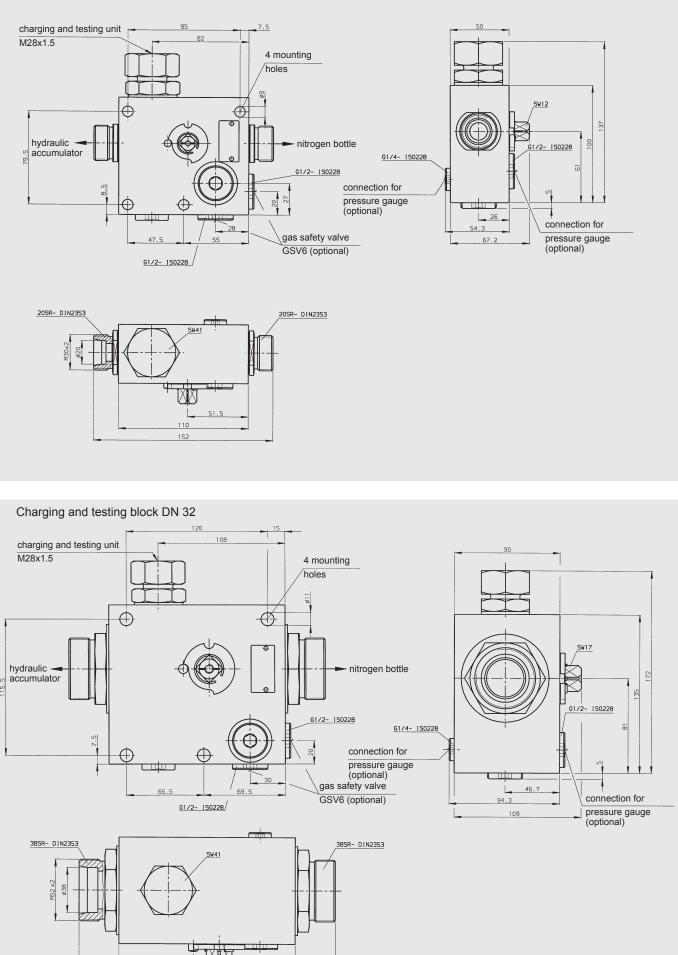
• Safety Equipment for Hydraulic Accumulators No. 3.552

4.1.2 Hydraulic circuit with charging and testing block



 * for further information, see catalogue section:
 Charging and Testing Unit FPU No. 3.501

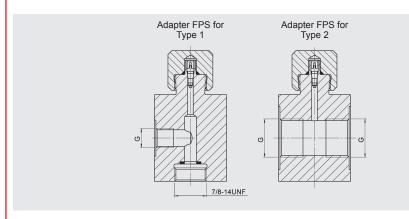
4.1.3 Preferred models / Spare parts


max. operating pressure [bar]	Weight [kg]	Part no.	Seal kit ¹⁾
400	4.3	850233	2115776
350	14	552193	2112088
	pressure [bar] 400	pressure [bar] [kg] 400 4.3	pressure [bar] [kg] 400 4.3 850233

¹⁾ recommended spare parts

4.1.4 Technical data/dimensions

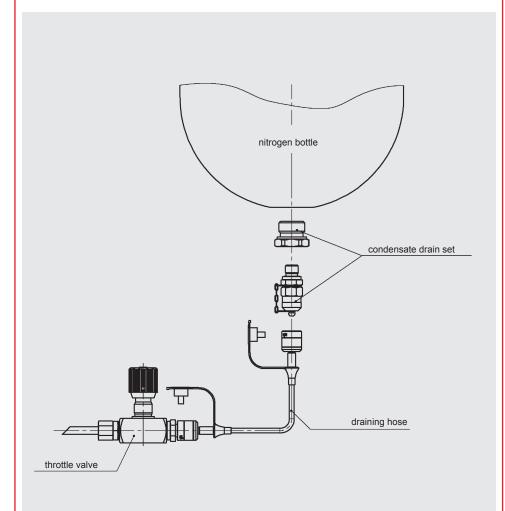
Charging and testing block DN 16



E 3.553.4/01.17

218

4.2. ADAPTER FPS


The HYDAC FPS adapter is used to charge back-up type hydraulic accumulators. For this it has a connection for the Charging and Testing Unit FPU-1.

Designation	G ISO228	Part no.	Design
Adapter FPS 7/8-14UNF	G 3/4	363226	1
Adapter FPS	G 3/4	243218	2

4.3. CONDENSATE DRAIN SET

The condensate drain set consists of a throttle valve and a suitable condensate draining hose. It is used to drain any condensate from the nitrogen bottle, in a controlled way.

Designation	Length [m]	Part no.		
Condensate drain G 3/4 – Minimess M16x1.5	—	3219496		
	0.4	3472820		
Condensate drain set	1	3472823		
	1.6	3472824		

4.3. NITROGEN CHARGING UNIT

HYDAC nitrogen charging units facilitate fast and cost-effective charging or testing of the required pre-charge pressures in bladder, diaphragm and piston accumulators. They guarantee optimum use of standard nitrogen bottles up to a residual pressure of 20 bar and a maximum accumulator charging pressure of 350 bar. Portable, mobile and stationary types of N_2 -Server are available.

For further information and technical specifications, see catalogue section:

• Nitrogen charging units N₂-Server No. 2.201

5. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH
Industriegebiet
66280 Sulzbach/Saar, Germany
Tel.: +49 (0) 68 97 / 509 - 01
Fax: +49 (0) 68 97 / 509 - 464
Internet: www.hydac.com
E-Mail: speichertechnik@hydac.com

E 3.553.4/01.17

HYDAD INTERNATIONAL

1. DESCRIPTION

1.1. FUNCTION

The HYDAC charging and testing unit FPU is used to charge accumulators with nitrogen or to check or to change the existing pre-charge pressure in accumulators.

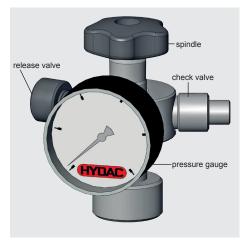
For this purpose the charging and testing unit is screwed onto the gas valve of the hydraulic accumulator and connected via a flexible charging hose to a commercial nitrogen bottle.

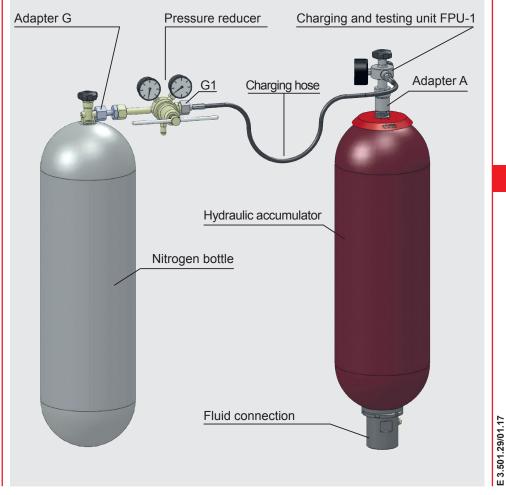
If the nitrogen pressure is only to be checked or reduced, the charging hose does not need to be connected. The unit has a screw-type fitting with a built-in pressure gauge, check valve and a spindle for opening the accumulator gas valve to check the pressure.

HYDAC piston and diaphragm accumulators can be charged and checked without the need for adapters. Bladder accumulators, however, require an A3 adapter.

Information on how to check the pre-charge pressure and testing intervals and other instructions relating to operation can be found in the operating instruction.

The operating instruction must be followed! No. 3.501.BA


Charging and Testing Unit FPU


for Bladder, Piston and Diaphragm Accumulators

1.2. DESIGN

The HYDAC FPU-1 charging and testing unit for bladder, piston and diaphragm accumulators consists of:

- Valve body
- Spindle
- Check valve
- Release valve
- Pressure gauge

TECHNICAL SPECIFICATIONS 2. 2.1. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC. FPU-1-350 / 250 F 2,5 G2 A1 K Charging and testing unit FPU-1-350 = Standard (p_{max} = 350 bar) FPU-2-800 = High-pressure version (p_{max} = 800 bar) Pressure gauge display range 10 bar (0 -25 bar (0 -10 = 0 -145 psi) 25 = 0 -363 psi) 100 = 0 - 100 bar (0 - 1450 psi)250 = 0 - 250 bar (0 - 3625 psi) 400 = 0 - 400 bar (0 - 5800 psi) 1000 = 0 - 1000 bar (0 - 14500 psi high-pressure version) Charging hose for nitrogen bottle 200 bar with connection W24,32x1/14 (DIN 477, Part 1) FM = for nitrogen bottle 300 bar with connection M30x1.5 (DIN 477, Part 5 up to April 2002) FW = for nitrogen bottle 300 bar with connection W30x2 (DIN 477, Part 5 from April 2002) FH = for pressure booster systems with connection 9/16-18UNF Charging hose length Standard $2.5 = 2.5 \,\mathrm{m}$ $4,0 = 4 \,\mathrm{m}$ High pressure version $6.0 = 6 \,\mathrm{m}$ others on request Adapter G for nitrogen bottles (only FPU-1) see Table, section 3.5. Adapter A A3 = 7/8-14UNF, incl. in FPU-1 scope of delivery as standard A3H= 7/8-14UNF (high pressure version), <u>not</u> incl. in FPU-2 scope of delivery for others, see Table, section 3.4. Protective case

Accessories - please give full details when ordering (see section 4.)

2.2. STANDARD TYPES FPU-1

The basic version of the FPU-1 is the minimum equipment required to test and set the pre-charge pressure (p_0) at the hydraulic accumulator. It comprises the FPU-1, a charging hose and the adapter A3 for bladder accumulators. The following standard types are available (others on request):

Models without protective case					
Designation	Part no.				
FPU-1-350/010F2.5A3	2114486				
FPU-1-350/010F4A3	2115056				
FPU-1-350/025F2.5A3	2114481				
FPU-1-350/025F4A3	2116876				
FPU-1-350/100F2.5A3	2114310				
FPU-1-350/100F4A3	2115657				
FPU-1-350/250F2.5A3	2114306				
FPU-1-350/250F4A3	2114311				
FPU-1-350/400F2.5A3	2115646				
FPU-1-350/400F4A3	2119673				

Models with protective case

Designation	Part no.					
FPU-1-350/010F2.5A3K	2115365					
FPU-1-350/010F4A3K	3013690					
FPU-1-350/025F2.5A3K	2114305					
FPU-1-350/025F4A3K	2116738					
FPU-1-350/100F2.5A3K	2115314					
FPU-1-350/100F4A3K	2114842					
FPU-1-350/250F2.5A3K	2114302					
FPU-1-350/250F4A3K	2114303					
FPU-1-350/400F2.5A3K	2114307					
FPU-1-350/400F4A3K	2114304					

To enable nitrogen bottles from different countries to be used, HYDAC provides a selection of adapters as accessories. The following standard types are available (others on request:)

Models with protective case and adapter G

Part no.
2114309
2114308
2103046
2117038
2115420
2120010
2115216
2115833
2115403
3104265
3738731
3820014

2.3. HIGH PRESSURE VERSIONS

The FPU-2 was designed specifically for high pressure applications. Just like the FPU-1, the FPU-2 can be used for universal applications. It can be screwed onto HYDAC piston and diaphragm accumulators directly to charge and/or to check the accumulator. For use with a bladder accumulator, the high pressure adapter A3H must be used. This is <u>not</u> included in standard delivery.

2.3.1 **Technical specifications Model code:** see section 2.1.

Max. operating pressure: 800 bar

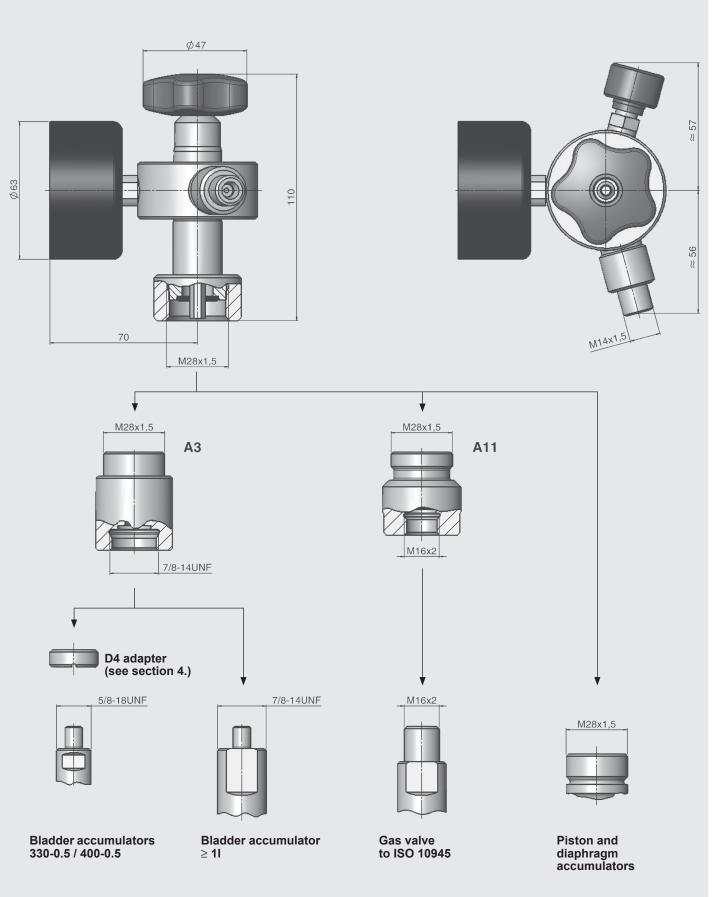
Pressure gauge display range: 0 - 1000 bar (0 - 14500 psi)

Material: Stainless steel 1.4313

2.3.2 Standard types FPU-2

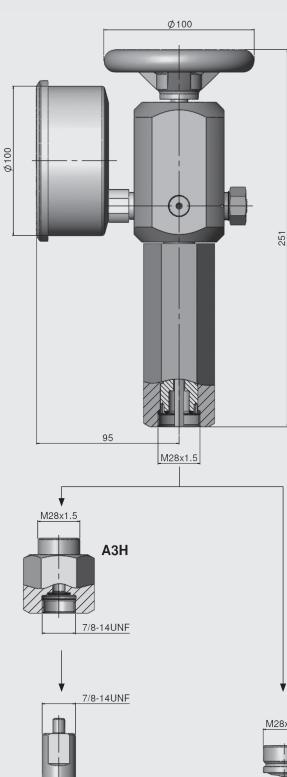
Models without protective case

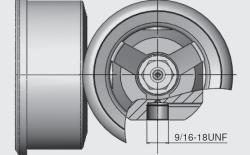
Designation	Part no.				
FPU-2-800/1000F6	4043456				
FPU-2-800/1000F6A3H	4043455				


Models with protective case

Designation	Part no.				
FPU-2-800/1000F6K	4029954				
FPU-2-800/1000F6A3HK	4023260				

E 3.501.29/01.17


3. DIMENSIONS

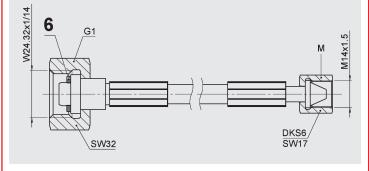

3.1. GAS-SIDE CONNECTION OF THE CHARGING AND TESTING UNIT FPU-1 USING ADAPTERS FOR HYDAC ACCUMULATORS

E 3.501.29/01.17

3.2. GAS-SIDE CONNECTION OF THE CHARGING AND TESTING UNIT FPU-2 USING ADAPTERS FOR HYDAC ACCUMULATORS

Bladder accumulator ≥1I

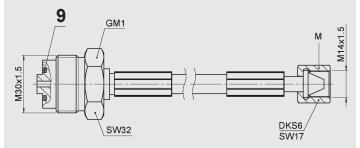
Piston and diaphragm accumulators


3.3. CHARGING HOSES

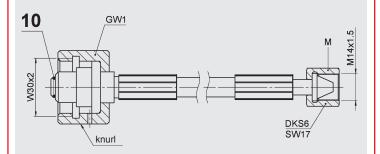
Charging hoses are designed for the particular maximum permitted operating pressure marked on them and 10,000 charging processes! (HYDAC charging hoses comply with DIN EN ISO 4413 and DIN EN 853 to 857)

3.3.1 Charging hoses for nitrogen bottles up to 200 bar

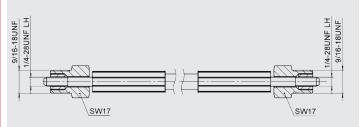
Charging hose F


Connection to DIN 477, Part 1

Туре	Length [m]	Part no.		
Charging hose F	2.5	236514		
	4	236515		
	10	373405		
	15	2115552		
	20	2109765		
	28	2109574		


3.3.2 Charging hoses for nitrogen bottles up to 300 bar Charging hose FM

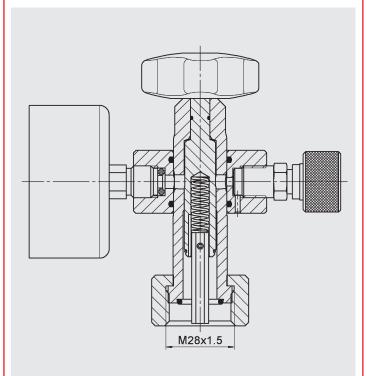
Connection to DIN 477, Part 5 up to April 2002


Charging hose **FW**

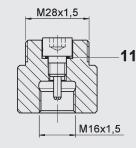
Connection to DIN 477, Part 5 from April 2002

Туре	Length [m]	Part no.
Charging hose FM	2.5	3019417
	4	3019418
Charging hose FW	2.5	3019419
	4	3019420

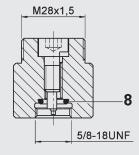
3.3.3 **Pressure hose for pressure booster systems** Charging hose **FH**

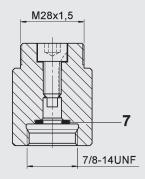

Туре	Length [m]	Part no.
Charging hose FH	6	6169682

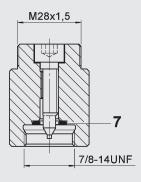
3.4. ADAPTERS A1 TO A13 FOR FPU-1

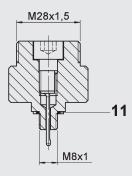

The FPU-1 is suitable for universal applications, as the A3 adapter that is included with delivery as standard allows both HYDAC piston and diaphragm accumulators and bladder accumulators to be charged and tested.

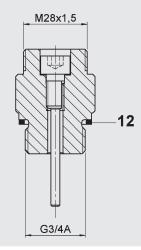
Additional adapters can be used to charge and test other brands of accumulator.

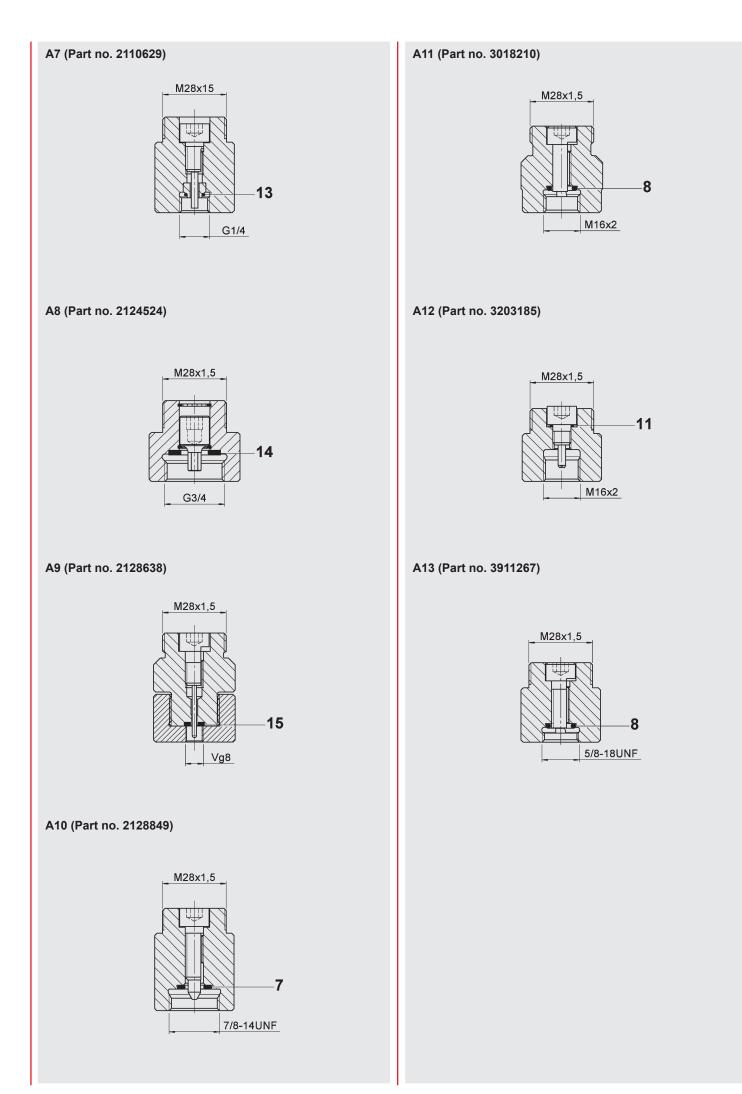

The following adapters are to be used exclusively with FPU-1, see section 3.1.


A1 (Part no. 361619)

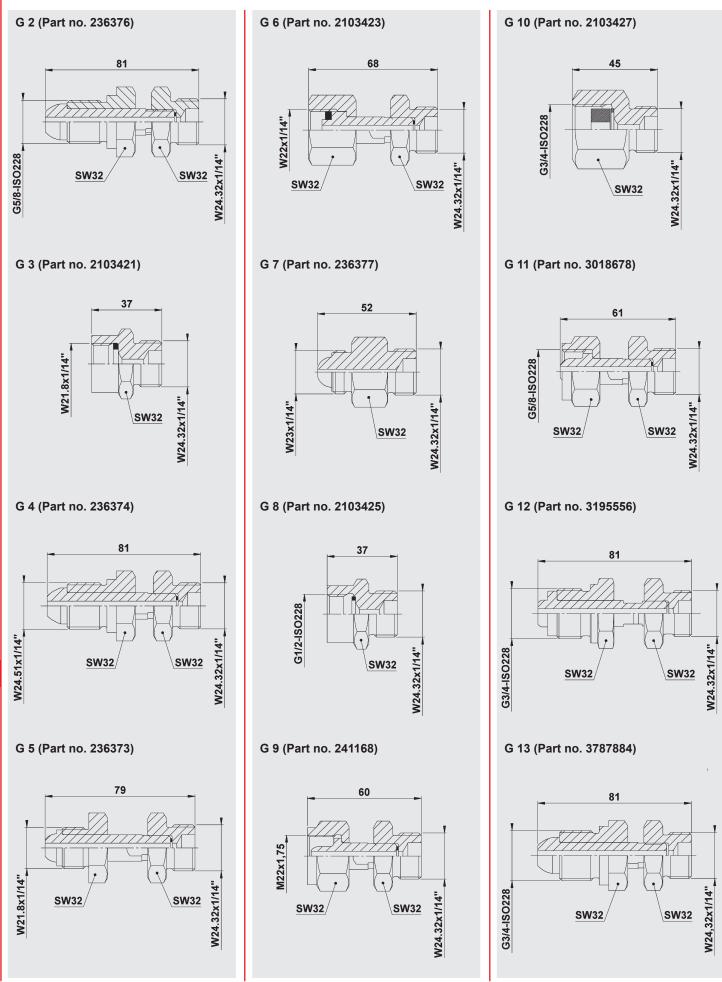

A2 (Part no. 361605)


A3 (Part no. 291533)


A4 (Part no. 291536)


A5 (Part no. 291531)

A6 (Part no. 2108819)



E 3.501.29/01.17

3.5. ADAPTERS G2 TO G13 FOR FPU-1

The FPU-1 can be used with nitrogen bottles from various countries. Depending on the particular country of manufacture for the nitrogen bottles (see list of countries), HYDAC offers the following G adapters, exclusively for use with the FPU-1. The FPU-2 is connected to a pressure booster system.

E 3.501.29/01.17 118 **HYDAC**

List of countries

Africa ³⁾ Albania Algeria Argentina Australia Australia Bahrain Bahrain Bangladesh Barbados Belgium Belgium Bollvia Brazil Bulgaria Burma Canada Chile China	€1 ¹⁾	G2 236376	G3 2103421	G4 236374	G5 236373	G6 2103423	G7 236377	G8 2103425	G9 241168	G10 2103427	G11 3018678	G12 3195556	G13 3787884
Ubania Ugeria vugentina uustralia uustria Bahamas Bahrain Jaroladesh Jarolados Belgium Solivia Brazil Julgaria Jurma Canada Jhile	•			236374	236373	2103423	236377	2103425	241168	2103427	3018678	3195556	
bania geria gertina gertina ustralia ustralia ahamas ahrain angladesh arbados elgium jlivia razil ulgaria ulgaria anada nile	•	•	•										
geria gentina Istralia Istralia Istria Ahamas Ahrain Angladesh Arbados Iglgium Jilvia Istria Iglaria Jigaria Jigaria Jirma Anada Iile	•	•	•					1		•		-	•
stralia istria ihamas ihrain ingladesh ingladesh ingladesh ilgium ilgium livia azil lgaria inglaria inma indla ile istria ist	•	•								-			
Istria hamas hhaina hamas hhain nigladesh rbados ligium livia azil ligaria ma inada lile bibliotechi de ligaria ligaria lile bibliotechi de ligaria li ligaria ligaria lig	•												
hamas hrain nigladesh irbados ligum azil azil ligaria anada nile	-	1								_		•	
ahrain angladesh angladesh angladesh arbados algium algium azil algaria argana anada ana		•								-			
arbados elgium Divia razil Jlgaria Jurma anada nile			•	1								1	
elgium Divia razil Jugaria Jurma anada hile		•											
blivia azil ulgaria urma anada nile		•											
razil ulgaria urma anada nile	•							•					
ulgaria urma anada hile				•				-					
urma anada nile			•										
nile		•											
nine				•				•					
								•			•		
olombia								•			-		
osta Rica		•		İ								İ	1
yprus zech Republic		•											
zech Republic	•												
ibouti	•		•		-	-		-					
ominican Republic								•					
cuador								•					
gypt		-	•										
hiopia ji		•											
nland	•	-		1								1	1
ance	-		•										
abon			•										
ambia ermany		•											
ermany hana	•	•											
reat Britain		•		1								1	1
reece		•								<u> </u>			
uatemala								•					
uinea			•					-					
uyana onduras								•					
ong Kong		•		1								1	
ungary			•										
dia		•											
donesia		•											
an aq			•										
eland		•											
rael			•										
aly					•								
ory Coast		•	•										
apan		-				•							
ordan		1	•	1								1	
enya		•											
orea			•				•						
uwait ebanon		1	•	-		-						-	
ibya			•										
lalawi		•											
alaysia		•											
lalta lauritius		•	•			-		-		-			
lexico			•										
orocco			•										
etherlands	٠												
ew Zealand		•	•										
igeria orway	•		•										
man	•	1	•	1								1	1
akistan		•		<u> </u>		1							
araguay								•					
eru hilippines		•						•					
oland	•	-											
ortugal		•											
uerto Rico				•									
atar			•										
omania ussia			•							•			
audi Arabia			•							-			
ingapore		•	1										
pain ri Lanka			•										
ri Lanka		•											
udan urinam		•											
weden	•	•											
witzerland	•	1				1							
yria			•										
aiwan									•				
anzania nailand		•											
rinidad/Tobago		-								•			
unisia		1	•	1								1	1
urkey		•											
kraine										•			
nited Arab Emirates			•					-					
sA				•				•					
enezuela		1								•		1	
etnam		•		<u> </u>		<u> </u>							
ugoslavia 2) ambia		•								•			

¹⁾ = already fitted to hose
 ²⁾ = Bosnia, Herzegovina, Croatia, Macedonia, Slovenia
 ³⁾ = Angola, Botswana, Lesotho, Mozambique, Namibia, Somalia, South Africa, Swaziland, Zimbabwe

E 3.501.29/01.17

4. ACCESSORIES

4.1. PROTECTIVE CASE

To protect the FPU from becoming soiled or damaged, with foam insert and prefabricated recesses to hold all parts and any accessories (adapters, tools, etc.).

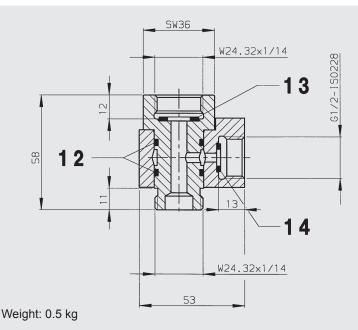
Different configurations are available, depending on customer requirement.

	Weight approx. [kg]		External dimensions [mm]
FPU-1 (basic	without case	1.4	-
version)	with case	3	460x350x120
FPU-2	without case	8.2	-
	with case	14.2	530x430x180

4.2. GAS SAFETY VALVE FOR FPU-1

Provides protection by reducing the pressure in a controlled way if pressure exceeds the permitted level unexpectedly, see catalogue section:

 Safety Equipment for Hydraulic Accumulators No. 3.552


4.3. ADAPTER D4 FOR FPU-1

For lock nut D for bladder accumulators < 1 I (see section 3.)

D4 = 5/8-18UNF (Part no. 366374)

4.4. INTERMEDIATE PIECE GSV6-10-CE FOR FPU-1

Intermediate piece for installing the gas safety valve GSV6 between the 200 bar nitrogen bottle and the Charging and Testing Unit FPU-1.

		r	,
scription	Quantity	Item	Part no.
ermediate piece GSV6-10-CE	-	-	242558
al kit for intermediate piece	-	-	2117287
nsisting of:			
O-ring 20x2.5x2	2	12	-
Seal ring 20x11.5x2	1	13	-
Seal ring 14x8.5x2	1	14	-
nsisting of: O-ring 20x2.5x2 Seal ring 20x11.5x2	- 2 1 1	13	2117287 - - -

4.5. PRESSURE REDUCER

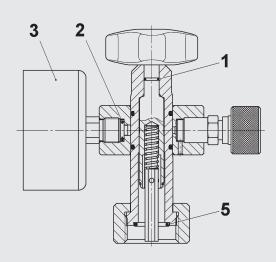
For adjusting the required pre-charge pressure between the nitrogen bottle and the accumulator.

4.5.1 Pressure reducer for 200 bar nitrogen bottles

Inlet: connection W24, 32x1/14-DIN 477, Part 1 Outlet: external thread W24, 32x1/14-DIN477, Part 1

Bottle pressure [bar]	Pressure after reducer [bar]	Part no.
	20	635409
200	100	635411
	200	635412

4.5.2 **Pressure reducer for 300 bar nitrogen bottles** Inlet: connection W30x2-DIN 477, Part 5


Outlet: external thread W24, 32x1/14-DIN 477, Part 1

Bottle pressure [bar]	Pressure after reducer [bar]	Part no.
300	20	6004020
	100	6004021
	200	6004022
	270*	6004023

* for pressures after reducer > 200 bar, the outlet has an external thread W30x2-DIN 477, Part 5

5. SPARE PARTS, ADAPTERS AND TOOLS

5.1. SPARE PARTS FOR FPU-1

5.4. SPARE PARTS FOR FPU-2

The scope of delivery for FPU-2 already includes additional seals as replacements.

6. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

Descri	Description		Quantity	Item	Part no.
Seal kit for FPU-1 consisting of:		1	-	2117669	
O-r	ing 6x1		1	1	-
Sea	al ring		1	2	-
O-r	ing 15x2		1	5	-
Sea	al ring		1	6	-
O-r	O-ring 11x2		1	7	-
O-r	O-ring 9x2		1	8	-
O-r	O-ring 11x2.5		1	9	-
O-r	O-ring 5.7x1.9		1	10	-
Pressu	ire 0 - 1	0 bar			635139
gauge	gauge 0 - 25 bar 0 - 100 bar		1		635140
				3	635141
	0 - 250 bar				635142
	0 - 400 bar				635143

5.2. ADAPTERS FOR FPU-1

Description	Quantity	Item	Part no.
Seal kit for adapters A1-13 consisting of:	1	-	3269153
O-ring 11x2	3	7	-
O-ring 9x2	3	8	-
Seal ring 9.3x13.3x1	3	11	-
Seal ring 27x32x2	1	12	-
O-ring 6x1.2	1	13	-
O-ring 19x2	1	14	-
Seal ring for A9 adapter	1	15	-
Seal ring 6x13x2	1	50*	-

* only suitable for A7 adapter up to May 2006

5.3. TOOLS FOR FPU-1

Designation	Part no.
Wrench 14x15	1011065
Allen key SW6	1005164
Torque wrench	3136470
Valve tool for gas valve	616886

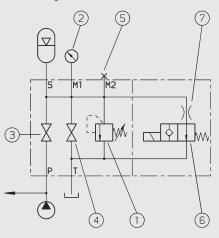
HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAD INTERNATIONAL

Safety and shut-off block SAF/DSV

1. DESCRIPTION

1.1. GENERAL


The HYDAC safety and shut-off block is a hydraulic accessory that is used to shut off and discharge hydraulic accumulators. It complies with relevant safety standards in accordance with DIN EN ISO 4413 and the German industrial safety regulations BetrSichV.

The HYDAC pressure relief valve DB12 is used in the SAF series. It is a directacting pressure relief valve in poppet valve construction with excellent opening and closing properties. This version of the DB12 complies with the requirements of the European Pressure Equipment Directive (PED) with CE marking and is supplied with a declaration of conformity and an operating instructions.

The operating instructions must be followed! No. 5.169.B

1.1.1 Key to the circuit diagram

Circuit diagram

① Pressure relief valve to prevent excessive pressure in accordance with European Pressure Equipment Directive (PED)

- ②Pressure gauge
- ③Shut-off valve
- ④ Pressure release valve
- S Connection for test gauge

These devices are combined in a compact, space-saving HYDAC safety and shut-off block. The following devices are also available:

© Solenoid-operated pressure release valve ⑦ Throttle

DB12-CE p-Q graph, see ① above

1.1.2 Product benefits

The compact combination of components considerably simplifies the connection of an accumulator or consumer to the hydraulic system and provides the following benefits:

- Minimum of space and maintenance and installation required. As all the individual units are combined in one block, considerably fewer pipe fittings are necessary for installation.
- Considerable reduction in installation time.
- All types of connections for various accumulator designs and manufacturers are available – imperial and metric connections as well as manifoldmounted and weld nipples.
- Additional valves such as pilot-operated check valves, flow control valves and combined flow control and check valves can be fitted to the system connection P.

1.2. DESIGN

The SAF safety and shut-off block consists of a valve block, an integrated HYDAC pressure relief valve, a main shut-off valve and a manually operated pressure release valve, and the necessary pressure gauge connections are provided in addition to the tank connection.

In addition an optional solenoid-operated 2-way directional valve allows automatic discharge of the accumulator or consumer and therefore of the hydraulic system in an emergency or for shut-down.

1.3. PORTS

The safety and shut-off block has the following ports:

- S Accumulator port
- P Line connection connects SAF to the system (pump)
- T Tank connection The piping to the tank must be separate. This ensures that the flow can be channelled away to the tank in a depressurised state when pressure relief valve DB12 is opened.
- M1 Test gauge connection G 1/2-ISO 228 (G 1/4 at SAF10)
- M2 Pressure gauge connection G 1/4-ISO 228

1.4.1 **Operating fluids** Mineral oil to DIN 51524 Part 1 and Part 2 (other fluids on request)

Viscosity range

min. 10 mm²/s max. 380 mm²/s

Filtration

Max. permitted contamination level of the operating fluid to ISO 4406 Class 21/19/16 or SAE AS 4059 Class 11. We therefore recommend a filter with a minimum retention rate of $\beta_{20} \ge 100$. The fitting of filters and regular replacement of the filters guarantees correct operation, reduces wear and extends the service life.

1.4.2 Permitted operating temperature -10 $^\circ C$... +80 $^\circ C$

(ambient temperature on E version limited to -10 $^\circ C$... +60 $^\circ C)$

1.4.3 Max. operating pressure 400 bar

1.4.4 Model with solenoid-operated pressure release

Туре

Solenoid-operated by means of pressuretight, oil-immersed, single-stroke solenoids in accordance with VDE 0580. Actuating solenoid with male connector to DIN 43650, standard for general industrial applications, available for 24 V DC and 230 V AC.

Type of voltage

DC solenoid When connected to AC voltage, the necessary DC voltage is produced by means of a bridge rectifier connector.

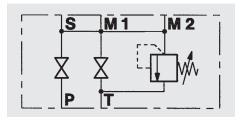
VOLTAGE TOLERANCE ± 15 % of the nominal voltage

Nominal current

Dependent on the nominal voltage 24 V DC 0.80 A 230 V AC 0.11 A

Power consumption

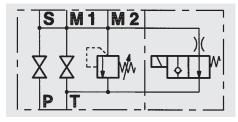
p₂₀ = 18 W DUTY

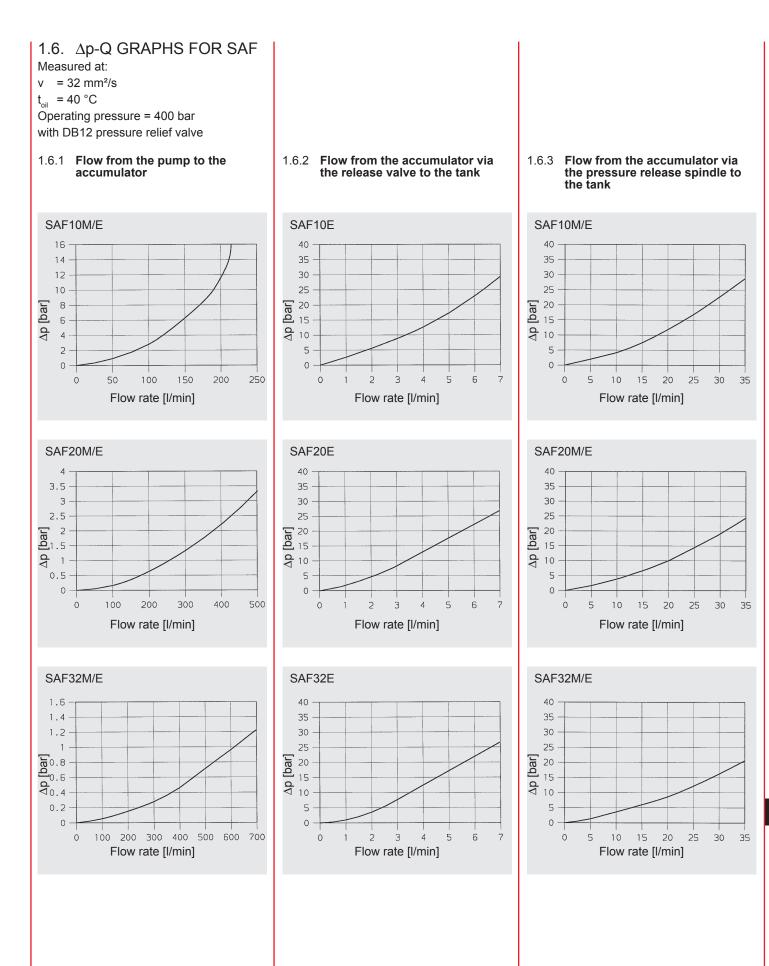

100 % (continuous) Switching time

Depending on symbol, pressure across the individual ports and flow rate WSM06020Y: on: 50 ms off: 35 ms WSM06020Z: on: 35 ms off: 50 ms

1.5. STANDARD TYPES

1.5.1 Model with manually operated pressure release valve

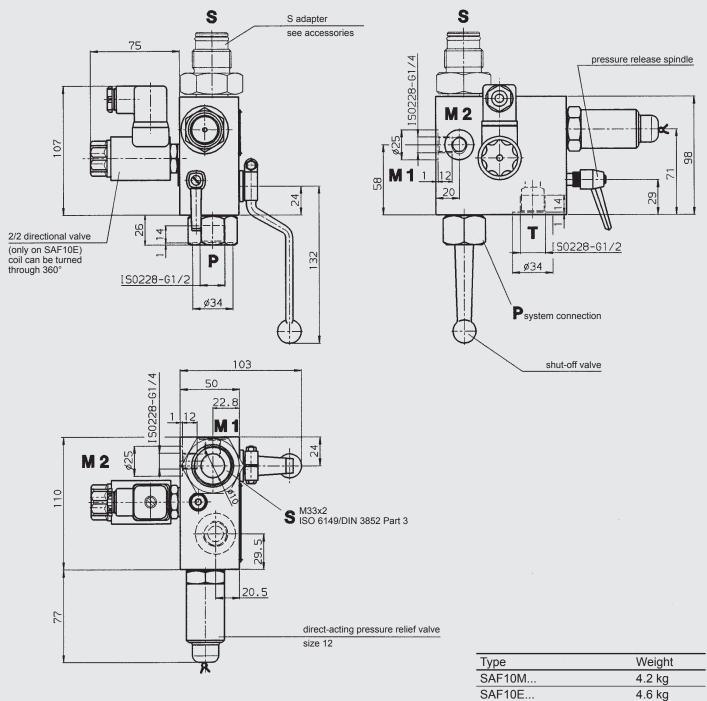

The basic model safety and shut-off block has a manually operated pressure release valve, code "M", and a direct-acting pressure relief valve.


Sizes: SAF10M SAF20M SAF32M

1.5.2 Model with solenoid-operated pressure release

The E version of the safety and shut-off block has a solenoid-operated 2-way directional valve for automatic pressure release of the accumulator and the hydraulic system.

Sizes: SAF10E SAF20E SAF32E

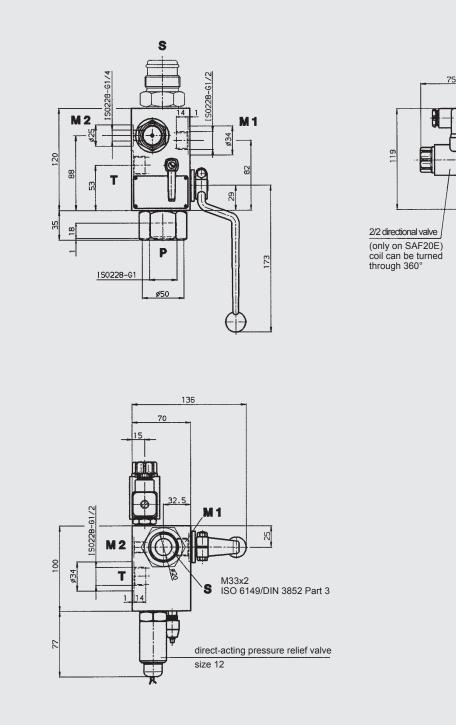

2. MODEL CODE FOR SAF SAF 20 E 1 2 Y 1 T 210 A - S13 - LPI Not all combinations are possible. Order example. For further information, please contact HYDAC.
Safety and shut-off block
Series SAF
Size of main abut off value
Size of main shut-off valve 8 = DN8
10 = DN10
20 = DN20
32 = DN32
32-3 = DN32 with 3 pressure relief valves NG 12 50 = DN50
Type
M = manual discharge E = solenoid-operated and manual discharge
Block material
$1 = \text{carbon steel}$ $3 = \text{stainless steel}^{1)}$
Seal material (elastomer)
2 = NBR 5 = EPDM
6 = FKM
7 = other
Turns of directional poppet value
Type of directional poppet valve Y = open when de-energised (2/2 directional valve WSM06020Y)
Z = closed when de-energised (2/2 directional valve WSM06020Z, only up to 350 bar)
Turne of violence – directional nonnet value
Type of voltage – directional poppet valve 1 = 24 VDC
2 = 115 VAC
3 = 230 VAC
6 = 120 V AC
7 = other
Pressure relief valve
T = pressure-set with TÜV N = pressure-set without TÜV ²
Pressure setting
e.g. 210 bar
Threaded connection to
A = ISO 228 (BSP) ³ B = DIN 13, to ISO 965/1 (metric) ²
B = DIN 13, to ISO 965/1 (metric) ² C = ANSI B1.1 (UNF, O-ring seal to SAE) ²
Adapter
to accumulator (see section 8.)
e.g. S13 = ISO 228 - G 2A
Additional equipment (see section 5.)
L = lockable main shut-off valve (for use with locking device)
LPI = model L with additional position monitoring (inductive proximity switch)
LPM = model L with additional position monitoring (mechanical limit switch with roller lever) LS = lockable pressure release spindle
Accessories – please give full details when ordering, see section 8.

E 3.551.22/01.17

¹⁾ dependent on type and pressure range
 ²⁾ on request
 ³⁾ in conjunction with SAF8 = 9/16-18UNF or G 1/4 ISO 228 (BSP)

3. DIMENSIONS

3.1. SAF10 SAFETY AND SHUT-OFF BLOCK SIZE 10



SAF10 Standard types

Туре	Part no.	Туре	Part no.	
SAF10M12T400A	2121582	SAF10E12Y1T400A	2125858	
SAF10M12T350A	2122208	SAF10E12Y1T350A	2122210	
SAF10M12T330A	2121236*	SAF10E12Y1T330A	2122211*	
SAF10M12T315A	2121121	SAF10E12Y1T315A	2122212	
SAF10M12T300A	2121354	SAF10E12Y1T300A	2122213	
SAF10M12T250A	2121353	SAF10E12Y1T250A	2122214	
SAF10M12T210A	2121346	SAF10E12Y1T210A	2121662	
SAF10M12T200A	2121351	SAF10E12Y1T200A	2122215	
SAF10M12T150A	2121345	SAF10E12Y1T150A	2122216	
SAF10M12T100A	2121344	SAF10E12Y1T100A	2122041	
SAF10M12T070A	2121350	SAF10E12Y1T070A	2122217	
SAF10M12T050A	2122207	SAF10E12Y1T050A	2122218	
SAF10M12T035A	2121349	SAF10E12Y1T035A	2122219	
SAF10M12T070A SAF10M12T050A	2121350 2122207	SAF10E12Y1T070A SAF10E12Y1T050A	2122217 2122218	

* preferred models

3.2. SAF20 SAFETY AND SHUT-OFF BLOCK SIZE 20

Туре	Weight
SAF20M	6.8 kg
SAF20E	7.2 kg

S

🕀 M 2

т

70.5

shut-off valve

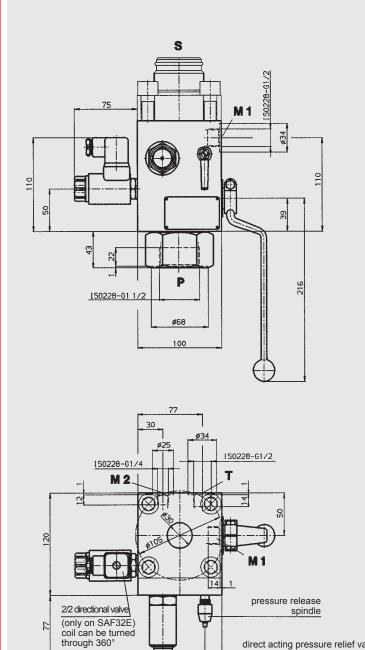
S adapter

see accessories

–)≮

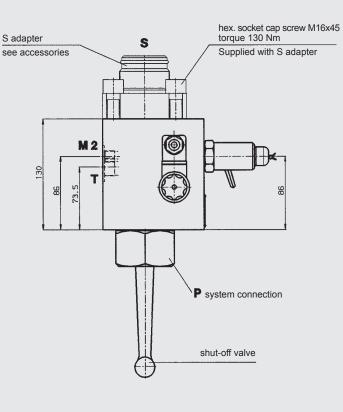
pressure release

spindle


P system connection

SAF20 Standard types

Туре	Part no.	Туре	Part no.	
SAF20M12T400A	2120317	SAF20E12Y1T400A	2121022	
SAF20M12T350A	2120434	SAF20E12Y1T350A	2121979	
SAF20M12T330A	2120323*	SAF20E12Y1T330A	2120394*	
SAF20M12T315A	2120324	SAF20E12Y1T315A	2120833	
SAF20M12T300A	2120332	SAF20E12Y1T300A	2120836	
SAF20M12T250A	2120432	SAF20E12Y1T250A	2120851	
SAF20M12T210A	2120319	SAF20E12Y1T210A	2120320	
SAF20M12T200A	2120325	SAF20E12Y1T200A	2120835	
SAF20M12T150A	2120330	SAF20E12Y1T150A	2120832	
SAF20M12T100A	2120401	SAF20E12Y1T100A	2120369	
SAF20M12T070A	2120326	SAF20E12Y1T070A	2120849	
SAF20M12T050A	2122172	SAF20E12Y1T050A	2121000	
SAF20M12T035A	2120281	SAF20E12Y1T035A	2122220	
* 6 1 11				

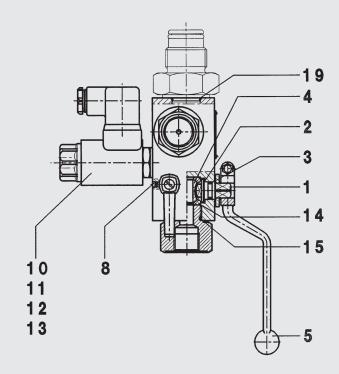

E 3.551.22/01.17 * preferred models

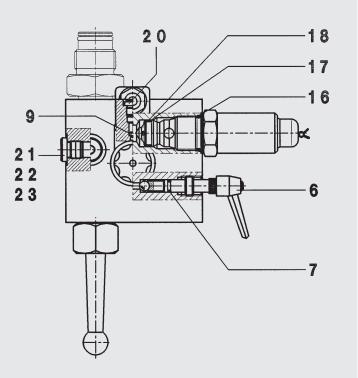
3.3. SAF32 SAFETY AND SHUT-OFF BLOCK SIZE 32

50

20

Туре	Weight
SAF32M	12.0 kg
SAF32E	12.4 kg

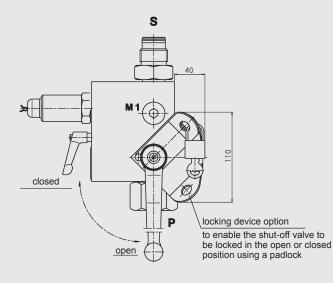

SAF32 Standard types


Туре	Part no.	Туре	Part no.	
SAF32M12T400A	2125856	SAF32E12Y1T400A	2123123	
SAF32M12T350A	2122230	SAF32E12Y1T350A	3125142	
SAF32M12T330A	2122231*	SAF32E12Y1T330A	2120371*	
SAF32M12T315A	2121136	SAF32E12Y1T315A	2122222	
SAF32M12T300A	2120837	SAF32E12Y1T300A	2120834	
SAF32M12T250A	2122233	SAF32E12Y1T250A	2122223	
SAF32M12T210A	2120321	SAF32E12Y1T210A	2120318	
SAF32M12T200A	2121135	SAF32E12Y1T200A	2122224	
SAF32M12T150A	2121134	SAF32E12Y1T150A	2122225	
SAF32M12T100A	2121129	SAF32E12Y1T100A	2122226	
SAF32M12T070A	2122234	SAF32E12Y1T070A	2122227	
SAF32M12T050A	2121137	SAF32E12Y1T050A	2122228	
SAF32M12T035A	2121125	SAF32E12Y1T035A	2122229	
* Preferred models				

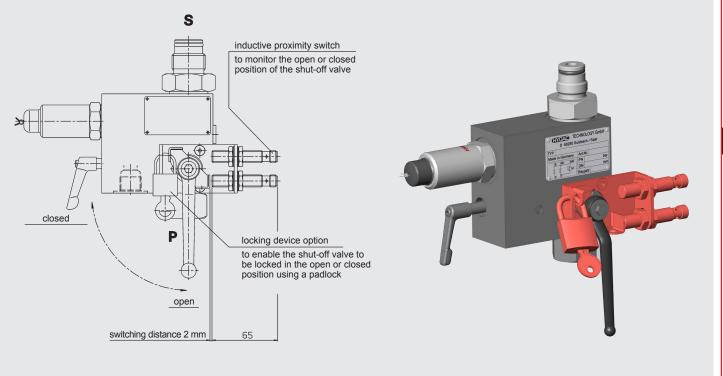
size 12

direct acting pressure relief valve

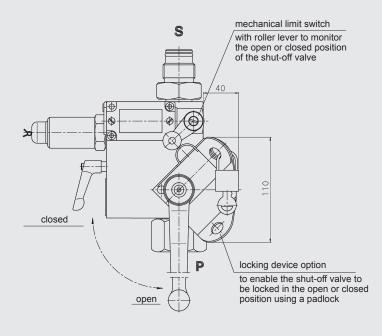
4. SPARE PARTS

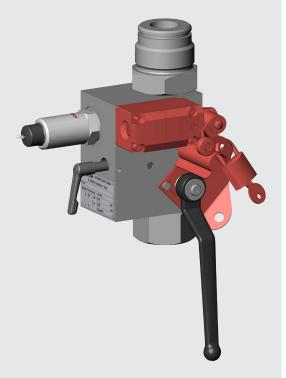


Type of safety and shut-off block	SAF10M, SAF10E	SAF20M, SAF20E	SAF32M, SAF32E			
Description Iter	1	Dimensions or Part no.	·			
Repair kit	2122238 (NBR)	2122242 (NBR)	2122246 (NBR)			
consisting of:	2122240 (FPM)	2122244 (FPM)	2122248 (FPM)			
	1					
Disc	2					
O-ring	3 10x2	15x2.5	20x3			
Ball	1					
Switching handle	5					
Spindle	3					
O-ring	7	6x2				
Threaded pin	3 M4x6	M4	x10			
Orifice	9	Ø1.5 mm (Q _{max} – 25.5 l/min)			
O-ring 1	1	17x2				
Back-up ring 1		11.7x15x1				
O-ring 1	11x2					
Sealing cup 1						
O-ring 1	-	34x2.5	56.7x2.8			
O-ring 1	6 23.47x2.62					
Back-up ring 1	18.3x21.5x1					
O-ring 1		18x2				
O-ring 1	9 29.7x2.8	29.7x2.8	37.2x3			
int. hex. locking screw 2		G 1/8	G 1/8			
2		G 1/4 G 3/8	G 1/4 G 3/8			
2		G 1/2	G 1/2			
2/2 directional valve assembly (only for E-version)	WSM06020Y - open when de WSM06020Z - closed when d					
Blanking plug assembly (converts "E" version to "M" version)	277645					
Seal kit consisting of : Items 3, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23	2121699 (NBR) 2121701 (FPM)	2121703 (NBR) 2121705 (FPM)	2121707 (NBR) 2121709 (FPM)			
Spindle repair kit consisting of: Items 6, 7, 8	2115648 (NBR) 2115649 (FPM)					

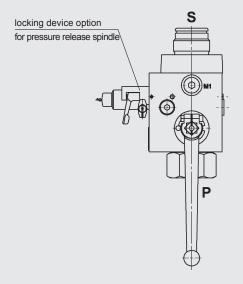

5. ADDITIONAL EQUIPMENT FOR SAFETY AND SHUT-OFF BLOCKS

Safety and shut-off blocks can be supplied with different options for locking the shut-off valve in position (see section 2. Model code for SAF) and to lock the release valve (see section 8.). The following overview shows the individual models:


Additional equipment L

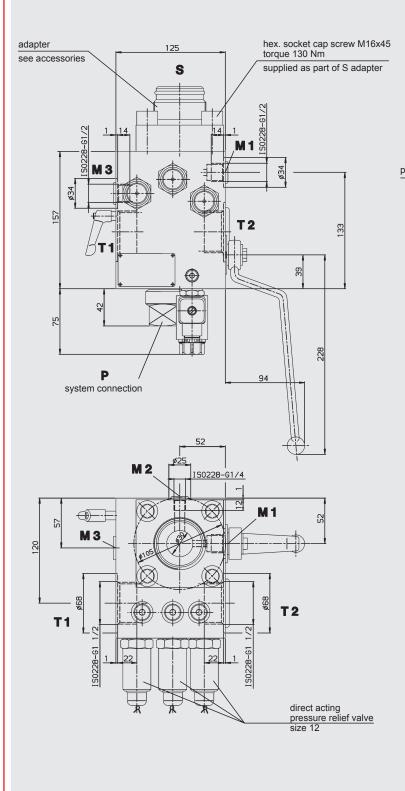


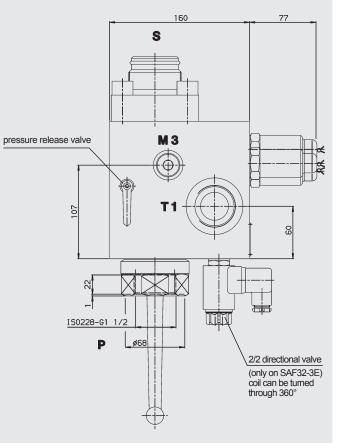
Additional equipment LPI



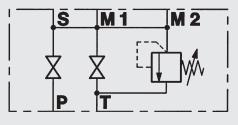
Additional equipment LPM

Supplementary equipment LS

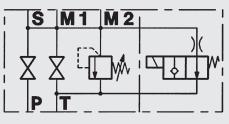

E 3.551.22/01.17



6. SPECIAL MODELS

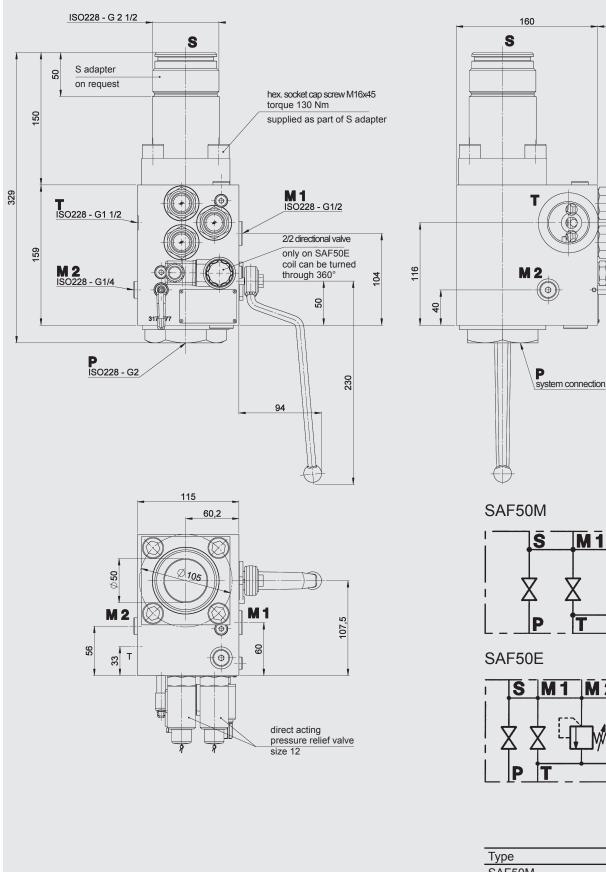

6.1. TYPE SAF32-3M(E)

with 3 direct acting pressure relief valves size 12 (max. operating pressure 400 bar)



SAF32-3M

SAF32-3E



Туре	Weight
SAF32-3M	24 kg
SAF32-3E	25 kg

6.2. TYPE SAF50M(E)

for large flows

with 3 direct acting pressure relief valves size 12 (max. operating pressure 400 bar)

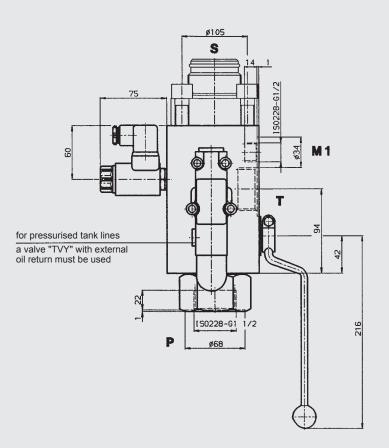
Weight SAF50M.. 25 kg SAF50E... 26 kg

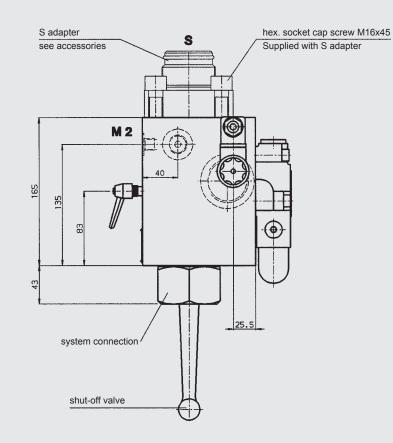
M2

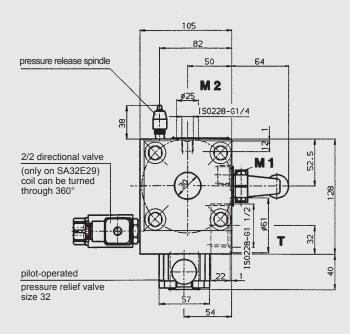
MA.

Ľ 1

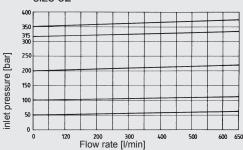
77

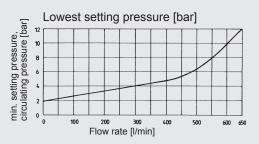

θ

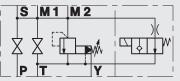

pressure release valve


M 2

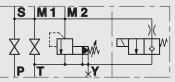
6.3. TYPE SA32M(E)29

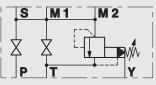

with pilot-operated pressure relief valve ($Q_{max} = 600$ l/min) (max. operating pressure 330 bar)

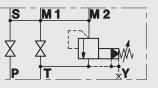




Pilot-operated pressure relief valve size 32




SA32E29TVY


SA32E29TV

SA32M29TVY

SA32M29TV

The safety and shut-off block SA32M(E)29 is equipped with a pilot-operated pressure relief valve size 32 for high flow rates up to 600 l/min.

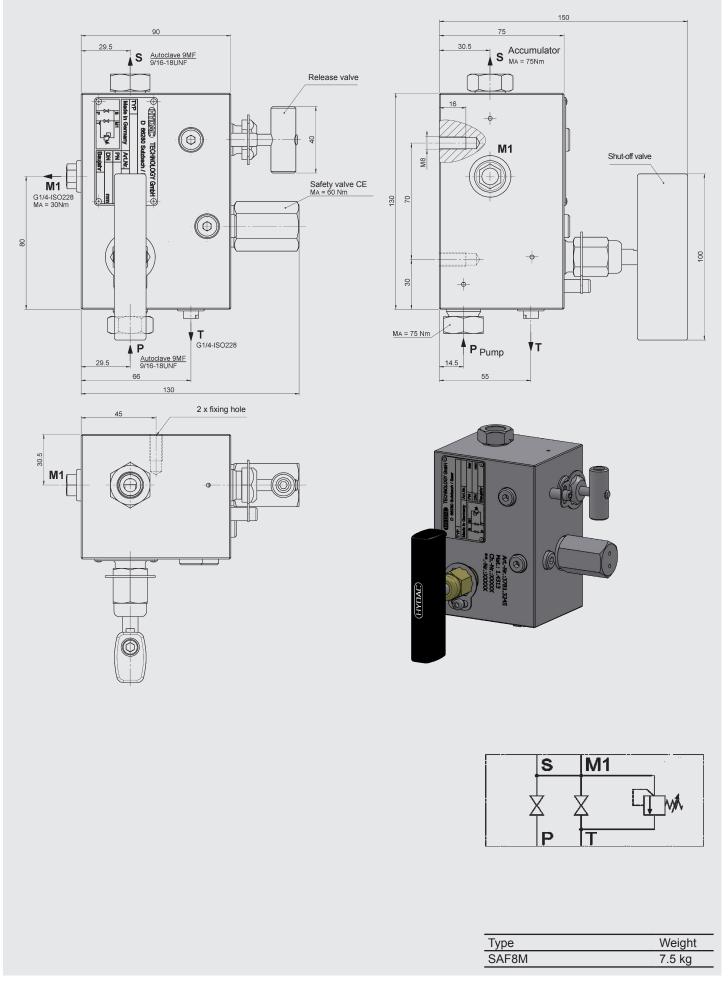
The E version of the safety and shut-off block has a solenoid-operated 2-way directional valve for automatic pressure release of the accumulator and the hydraulic system in an emergency or for shut-down.

For unpressurised tank lines, valve type "TV" must be used

(with internal pilot-oil return to tank).

For pressurised tank lines, valve type "TVY" is recommended

(with external oil return to tank). Two different models of the 2-way


directional valve are available:

- WSM06020Y (open when de-energised)
- WSM06020Z (closed when de-energised)

Туре	Weight
SA32M29	22.5 kg
SA32E29	23.5 kg

6.4. TYPE SAF8M

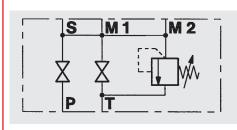
For pressure 400 bar and above, in stainless steel with high-pressure ports (e.g. Maximator) (max. operating pressure 800 bar)

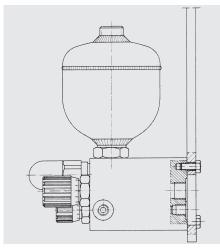
6.5. SAFETY AND SHUT-OFF **BLOCK FOR FRONT** PANEL MOUNTING

The safety and shut-off block consists of a valve block, a built-in pressure relief valve, a main shut-off valve and a manually operated pressure release valve.

This block is mounted on a front panel with 3 M8 screws. Ports "P" and "T" are located on the mounting side.

Advantages:


The compact design means that the block occupies a minimum of space and ensures minimum maintenance.


Specifications:

Type:	SA6M10T
Size:	DN10
Max. operating pressure:	350 bar
Direct-acting pressure	

relief valve:

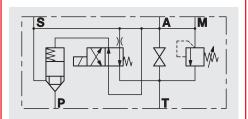
0 bar size 6

6.6. SAFETY AND SHUT-OFF **BLOCK WITH 2-WAY** CARTRIDGE VALVE (LOGIC ELEMENT)

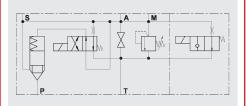
This safety and shut-off block consists of a valve block, an integrated pressure relief valve and a solenoid-operated 2-way cartridge valve which replaces the main shut-off valve.

Advantages:

In addition to its compact construction, this model is capable of rapid switching to control the oil flow.


6.6.1 Function when using 4/2 directional valve

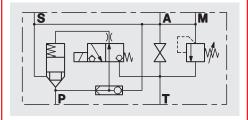
When the 4/2 directional valve is in the switching position shown (open when de-energised), the spring chamber of the logic element is pressurised via the accumulator pressure; the path from P to S is blocked and the hydraulic accumulator is automatically shut off from the system. By connecting the accumulator via the slip-in orifice in the pilot valve to the tank, it will slowly discharge.

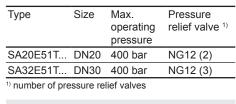

When the 4/2 directional poppet valve is in the discharge position (energised) the spring chamber of the logic element is discharged, the path from P to S is open and the accumulator is charged.

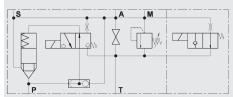
Technical specifications:

Туре	Size	Max. operating pressure	Pressure relief valve ¹⁾		
SA20A50T			NC12 (2)		
			NG12 (2)		
SA32A50T	DN30	400 bar	NG12 (3)		
¹⁾ number of pressure relief valves					

Туре	Size	Max. operating pressure	Pressure relief valve ¹⁾		
SA20E50T	DN20	400 bar	NG12 (2)		
SA32E50T	DN30	400 bar	NG12 (3)		
¹⁾ number of pressure relief valves					


6.6.2 Function when using 3/2 directional poppet valve


When the 3/2 directional poppet valve is in the switching position shown (open when de-energised), the spring chamber of the logic element is pressurised via the system pressure; the path from P to S is blocked and the accumulator is shut off from the system. When the 3/2 directional poppet valve is in the discharge position (energised) the spring chamber of the logic element is discharged, the path from P to S is open and the accumulator is charged.


If the pump breaks down or if it is switched off, the 3/2 directional poppet valve reverts to the "open when de-energised" position; the accumulator pressure shuts off the logic element via the shuttle change-over valve and shuts off the accumulator from the system.

Technical specifications:

Туре	Size	Max. operating pressure	Pressure relief valve ¹⁾		
SA20A51T	DN20	400 bar	NG12 (2)		
SA32A51T	DN30	400 bar	NG12 (3)		
¹⁾ number of pressure relief valves					

7. DESCRIPTION OF DSV10

7.1. GENERAL

DSV10 as a low cost alternative to SAF10

The three-way safety block DSV10 is used to isolate and discharge hydraulic accumulators and consumers. It complies with the relevant safety standards in accordance with DIN EN 4413 and the German industrial safety regulations BetrSichV.

The HYDAC pressure relief valve DB12 is used with the DSV series. It is a directacting pressure relief valve in poppet valve construction with excellent opening and closing characteristics.

This version of the DB12 complies with the requirements of the European Pressure Equipment Directive (PED) with CE marking.

There are four different versions:

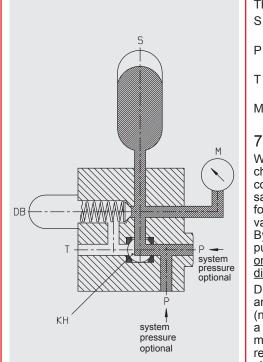
- DSV10M manual discharge, standard L-ball
 DSV10M-T-ball
- manual discharge, T-ballDSV10EY

manual/solenoid-operated discharge, open when de-energised

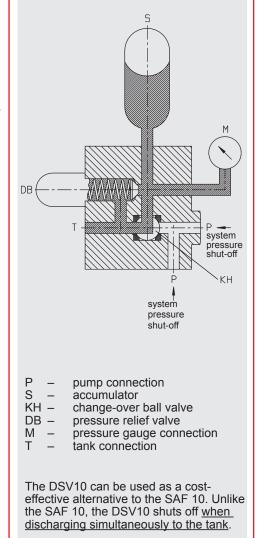
DSV10EZ

manual/solenoid-operated discharge Closed when de-energised

The essential difference compared to the SAF10 lies in the shut-off and discharge function of the DSV10. On request we can supply other models to cover almost all applications, e.g. for aggressive media.


On request we can supply test certificates to EN 10204 and quality test certificates to DIN 55350, Part 18.

7.2. DESIGN


The DSV three-way safety block consists of a valve block with an integrated pressure relief valve and the shut-off valve. It has ports for the pump, pressure gauge, tank and accumulator.

In addition, an optional solenoid-operated 2-way directional valve allows automatic discharge of the accumulator or consumer.

Accumulator operation

Shutting off the system pressure and simultaneously discharging the accumulator

7.3. PORTS

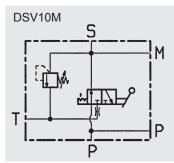
The DSV has the following ports:

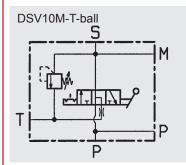
- S Accumulator port
 - (M33x2 DIN 3852 Part 3)
 - Line connection (G 3/8 and G 1/2)
 - Tank connection (G 1/4)
- M Pressure gauge connection (G 1/4)

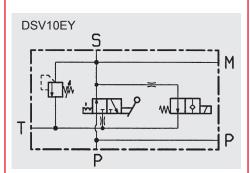
7.4. FUNCTION

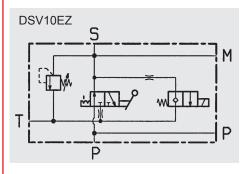
When the accumulator is in operation the change-over ball valve connects the pump connection with the accumulator. At the same time the accumulator is monitored for pressure via the built-in pressure relief valve.

By switching over the ball valve, the pump connection is shut off <u>leakage-free</u> on the inlet side and the accumulator is discharged simultaneously to the tank.


During switching all three ports (P, S and T) are momentarily interconnected (negative switching overlap). The fitting of a solenoid-operated 2/2 directional valve means that we can achieve automatic relief (e.g. in the event of a power failure or shut-down).


7.5. NOTES


Ball valves are not designed to be used as flow control valves; therefore they should always be either fully open or fully closed to avoid damaging the sealing cups.


To ensure correct functioning, pressure and temperature specifications must be observed.

7.6. TECHNICAL SPECIFICATIONS

7.6.2 Design

Ball valve isolating device Pressure relief valve is a direct-acting poppet seat valve

Poppet valve is pilot-operated

7.6.3 Materials

Housing and screw plug in steel, surface protection: phosphate-plated. Ball in steel, hard-chromed. Pressure relief valve and poppet valve in high tensile steel, closing element in hardened and ground steel, wear-resistant, surface protection: phosphate-plated, ball seal in high quality synthetic material (POM), soft seals in Perbunan (NBR), cranked handle SW09 in red anodised aluminium. 7.6.4 **Mounting position** optional

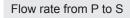
7.6.5 **Operating fluids** Mineral oil to DIN 51524 Part 1 and Part 2 (other fluids on request)

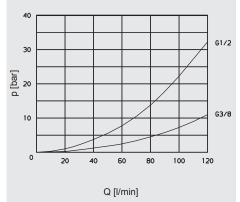
Viscosity range:

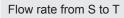
min. 10 mm²/s max. 380 mm²/s

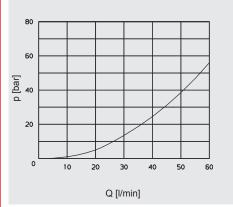
Filtration:

Max. permitted contamination level of the operating fluid to ISO 4406 Class 21/19/16 or SAE AS 4059 Class 11. We therefore recommend a filter with a minimum retention rate of $\beta_{20} \ge 100$. The fitting of filters and the regular replacement of filter elements guarantees correct operation, reduces wear and increases the service life.


7.6.6 Permitted operating temperature -10 °C ... +80 °C


(ambient temperature for E version limited to -10 °C ... +60 °C)


7.6.7 Maximum operating pressure 350 bar


7.6.8 Δp - Q characteristic curve Measured at

 $t_{oil} = 50 \degree C$ $v = 30 mm^2/s$

7.6.9 Model with solenoid-operated pressure release

Type Solenoid-operated by means of pressuretight, oil-immersed, single-stroke solenoids in accordance with VDE 0580. Actuating solenoid with male connector to DIN 43650, standard for general industrial applications, available for 24 V DC and 230 V AC.

Type of voltage

DC solenoid, when connected to AC voltage, the necessary DC voltage is produced by means of a bridge rectifier connector.

Voltage tolerance ±15% of the nominal voltage

Nominal current dependent on the nominal voltage

24 V DC 0.80 A

230 V AC 0.11 A

Power consumption $p_{20} = 18 \text{ W}$

Duty

100% (continuous) Switching time

Depending on symbol, pressure across the individual ports and flow rate.

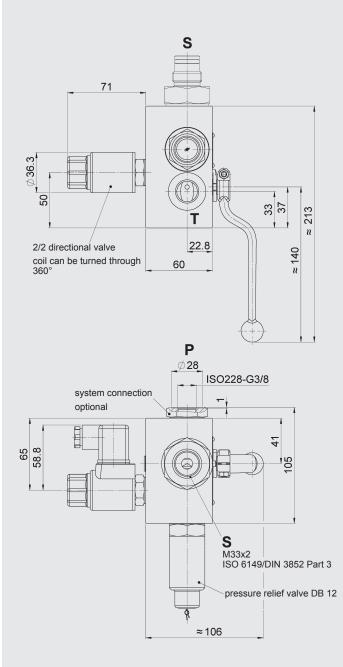
WSM06020Y:

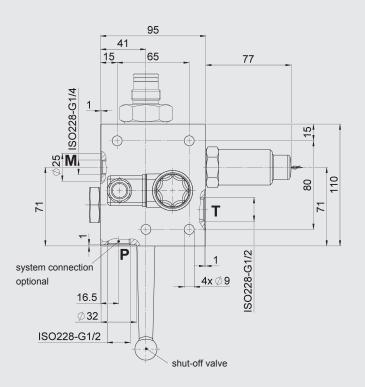
on: 50 ms off: 35 ms

WSM06020Z:

on: 35 ms

off: 50 ms

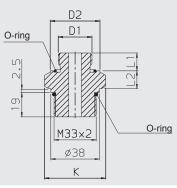

7.7. SPARE PARTS


Please see brochure:

 3-way safety block DSV No. 5.251

E 3.551.22/01.17

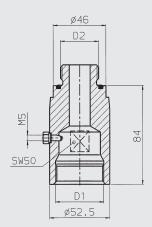
7.8.	MODEL CODE FOR DSV10 (also order example)
	$\underline{DSV} - \underline{10} - \underline{EY} - \underline{4} \cdot \underline{1} / \underline{1} / \underline{X} / \underline{T} \underline{210} - \underline{G} \underline{24} - \underline{Z4} \underline{S13}$
3-wav	safety block
<u></u> ,	
<u>Size</u> 10	
<u>Disch</u> M	arge
ΕY	 solenoid-operated and manual discharge – open when de-energised solenoid-operated and manual discharge – closed when de-energised
Type 4	of pressure relief valve = DB12
With/v	vithout fitted pressure relief valve
1	= with pressure relief valve = without pressure relief valve
	nulator connection = M33x2
I	
<u>Series</u> (speci	ied by manufacturer)
T V F	g of pressure relief valve = pressure setting with TÜV = adjustable using tool = preset by manufacturer = model without relief valve cartridge
<u>Openi</u>	ng pressure setting
e.g. 2′ xxx	10 bar opening pressure = model without relief valve cartridge
DB12 DB12	ure setting range – 150 bar – 250 bar – 350 bar
Type	of voltage for solenoid
G	= DC voltage = AC voltage
Nomi	nal voltage for solenoid
	= 24 V for type G voltage (DC) = 230 V for type W voltage (AC)
	e connection for solenoid = connector to DIN 43650 - AF2 - PG11
<u>Additi</u> S13	onal information = adapter S13 to accumulator (see section 8.)
010	

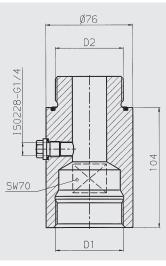

Туре	Weight
DSV10M	3.5 kg
DSV10E	3.9 kg

SAF10 Standard types

Туре	Part no.	Туре	Part no.
DSV-10-M-4.0/1/X/XXXX	555999	DSV-10-EY-4.0/1/X/XXXX-G24-Z4	557367
DSV-10-M-4.1/1/X/T100	555971	DSV-10-EY-4.1/1/X/T100-G24-Z4	555983
DSV-10-M-4.1/1/X/T150	555972	DSV-10-EY-4.1/1/X/T150-G24-Z4	555984
DSV-10-M-4.1/1/X/T200	555973	DSV-10-EY-4.1/1/X/T200-G24-Z4	555985
DSV-10-M-4.1/1/X/T210	555974	DSV-10-EY-4.1/1/X/T210-G24-Z4	555986
DSV-10-M-4.1/1/X/T250	555975	DSV-10-EY-4.1/1/X/T250-G24-Z4	555987
DSV-10-M-4.1/1/X/T300	555976	DSV-10-EY-4.1/1/X/T300-G24-Z4	555988
DSV-10-M-4.1/1/X/T315	555977	DSV-10-EY-4.1/1/X/T315-G24-Z4	555989
DSV-10-M-4.1/1/X/T330	555978	DSV-10-EY-4.1/1/X/T330-G24-Z4	555990
DSV-10-M-4.1/1/X/T350	555979	DSV-10-EY-4.1/1/X/T350-G24-Z4	555991

ACCESSORIES 8.


8.1. ADAPTERS FOR DIAPHRAGM ACCUMULATORS



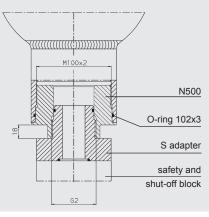
Туре	Accumulator type	Volume [I]	D1 thread	Adapter	Part no. ¹⁾ NBR/ Carbon steel	K SW	L1 [mm]	L2 [mm]	D2 [mm]	O-ring
SAF10/20 DSV10	SBOE- SBOA6-	0.075 1.4 0.1 0.6	G 1/2 A	S 30	369485	4.4	14	47 5	33	22x3
	SBOE- SBOA6-	2.0 3.5 1.3 4	G 3/4 A	S 31	369486	41	16	17.5	40	28x3

¹⁾ others on request

8.2. ADAPTERS FOR PISTON ACCUMULATORS

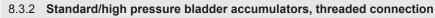
Figure 1

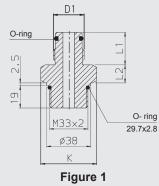
Туре	Accumulator type	Volume [I]		Part no. ¹⁾ NBR/ Carbon steel	Fig.		D2 [mm]		Corresponding S adapter	Part no. ¹⁾ NBR/ Carbon steel
SAF10/20	SK210/350 -	2.5 7.5	K 406	374929	1	G 1 1/4	G 1	35x3	S 12	369480
DSV10	SK210/350 -	10 45	K 408	374931	2	G 2	G 1 1/2	53x3	S 13	369481
SAF32	SK210/350 -	50 120	K 409	374933	2	62	G 2	62x3	S 309	366715

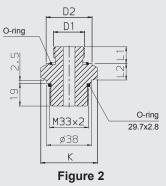

Figure 2

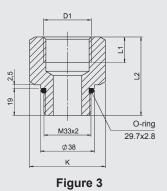
¹⁾ others on request

HYDAC | 143

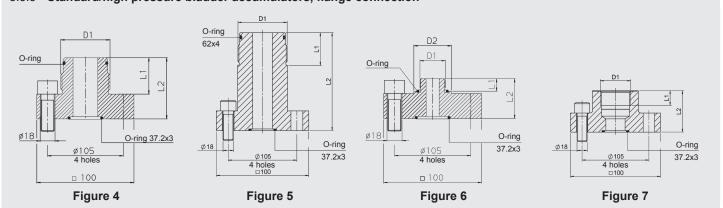

8.3. ADAPTERS FOR BLADDER ACCUMULATORS


8.3.1 Low pressure bladder accumulators



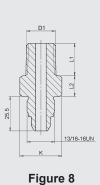

Туре	Accumulator type	Volume [l]	Adapter	Part no. ¹⁾ NBR/ Carbon steel	Corresponding S adapter	Part no. ¹⁾ NBR/ Carbon steel
SAF10/20 and DSV10	SD40	2.5 50	N500	267220	S 13	369481
SAF32	SB40			367229	S 309	366715

¹⁾ Others on request



Туре	Accumulator type	Volume	D1 thread	Adapter	Part no. 1) NBR/	K SW	L1	L2	D2	O-ring	Fig.
	lype	[1]	lineau		Carbon steel	[mm]	[mm]	[mm]	[mm]	[mm]	
SAF10 SAF20 DSV10	SB330/400-	0.6 1	G 3/4A	S 10	369479*	41	28	16	-	17x3	
	SB550/690-	1 5	G 1A	S 11	372750	46	34	17	-	22x3	
	SB330/400-	2.5 6	G 1 1/4A	S 12	369480*	40	37		-	30x3] 1
	SB330/400/ 550/600-	10 50	G 2A	S 13	369481*	65	44	21	-	48x3	
	connection with metric fine thread	-	M30x1.5	S 20	369482	41	15	18	40	32x2	
		-	M40x1.5	S 21	369483	55	20 2	21	54	43x3	2
		-	M50x1.5	S 22	369484	65	20	21	64	53x3	
	SB330/400-		G 3/4	S 367861	369489	41	18	50	-	-	
		2.5 50	G 1	S 379766	369490	46	20	55	-	-	3
			G 1 1/4	S 379767	369498	65	22	60	_	_	

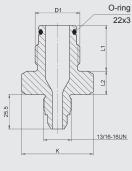
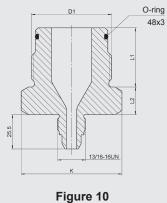
* preferred models ¹⁾ others on request

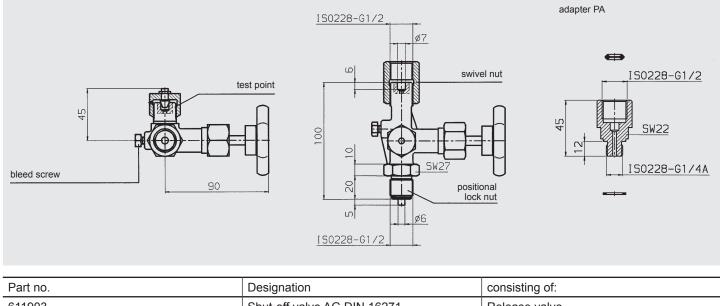

8.3.3 Standard/high pressure bladder accumulators, flange connection

Туре	Accumulator type	Volume	D1 thread	Adapter	Part no. ²⁾ NBR/	K SW	L1	L2	D2	O-ring	Fig.
		[I]			Carbon steel	[mm]	[mm]	[mm]	[mm]	[mm]	
	SB330/400-	0.6 1	G 3/4A	S 305 ¹⁾	366723	-	28	58	-	17x3	
	SB550/690-	1 5	G 1A	S 306 ¹⁾	2102855	-	34	64	-	22x3	
	SB330/400-	2.5 6	G 1 1/4A	S 307 ¹⁾	366724	-	37	67	-	30x3	4
	SB330/400/600-	10 50	- G 2A	S 309 ¹⁾	366715*	-	44	74	-	48x3	
	SB550- 10	10 50	G ZA	S 308 ¹⁾	376813	-	44 115 ·	-	40X3	- 5	
SAF32	SB330H-	10 50	G 2 1/2A	S 365922	377283	-	50	150	-	62x4	5
SAF52		_	M30x1.5	S 330 ¹⁾	366735	-	15	47	45	32x2	
	connection with metric fine thread	_	M40x1.5	S 340 ¹⁾	366736	-	20	51	60	43x3	6
		_	M50x1.5	S 350 ¹⁾	366737	-	20	51	75	53x3	
			G 1	S 365637	2106583	-	20	60	-	_	
	SB330/400-	10 50	G 1 1/4	S 369658	2106578	-	22	00	-	-	7
			G 1 1/2	S 237838	2103869	-	24	65	-	-	

* preferred models ¹⁾ adapter supplied with 4 hex. socket cap screws M16x45 (Part no. 6032726) torque 130 Nm ²⁾ others on request

8.3.4 High pressure bladder accumulators

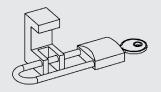




Figure 9

Туре	Accumulator type	Volume	D1 thread		Part no. ²⁾ Carbon steel	K SW	L1	L2	D2	O-ring	Fig.
		[1]				[mm]	[mm]	[mm]	[mm]	[mm]	
	SB500	≥ 10	G 2	S3961818	4158379 ¹⁾	65	44	20.5	_	48.3	10
SAF8	SB550	≤ 10	G 1	S3956412	4158378 ¹⁾	46	34	17.5	-	22.3	9
	SB690	1 to 54	1/2" NPT	S3936571	3936571	27	27	15.5	_	_	8

¹⁾ NBR O-ring ²⁾ others on request

8.4. GAUGE SHUT-OFF VALVE



Part no.	Designation	consisting of:
611903	Shut-off valve AG DIN 16271	Release valve
		swivel nut
		positional lock nut
		Test point
370754	Adaptor PA G1/4A-G1/2	

8.5. PRESSURE RELEASE SPINDLE LOCK

Locks the pressure release spindle on the SAF block to protect it from adjustment.

For mounting on SAF, see section 5. Additional equipment for safety and shut-off blocks, additional equipment LS.

Part no.	Designation	consisting of:
3580490	Spindle safety mechanism SAF	- Spindle safety mechanism SAF
		- Padlock

9.

described.

NOTE

technical department.

The information in this brochure relates to the operating conditions and applications

For applications and operating conditions not described. please contact the relevant

Subject to technical modifications.

8.6. ACCUMULATOR CHARGING VALVE

HYDAC accumulator charging valves control, within an adjustable switching range, the charging of the accumulator. By combining the charging valve with an accumulator, pumps and motors on oil-hydraulic plants with fluctuating flow requirements can be sized smaller. This saves costs and energy – thus preventing unnecessary heat generation.

For further information and technical specifications, see catalogue section:

 DLHSD DLHSR Accumulator Charging Valve No. 5.190.1 HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAD INTERNATIONAL

Safety Equipment for Hydraulic Accumulators

1. DESCRIPTION

1.1. GENERAL

Hydraulic accumulators are pressure equipment, as defined by the European Pressure Equipment Directive (PED), and as such their manufacture is subject to the statutory regulations.

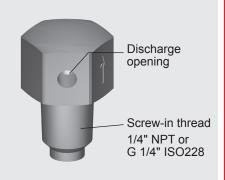
For safety in the workplace, system manufacturers and operators must draw up risk assessments for the particular site. These must take into account possible risks at the installation site, particularly in combination with external factors.

Fundamental risks affecting hydraulic accumulators are:

- Excessive pressure and
- Temperature increase
- (e.g. in the event of an external fire).

HYDAC provides the appropriate safety equipment to protect accumulators from the maximum permitted operating pressure PS of a hydraulic accumulator on the gas and fluid side; see also catalogue section:

 HYDAC Accumulator Technology No. 3.000

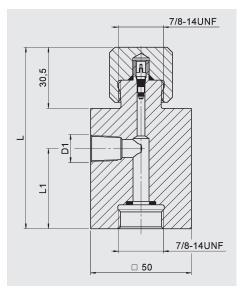

When selecting safety equipment, consideration must be given to the material (elastomers and housing material) as regards material compatibility in the application.

The response pressure of safety equipment must <u>**not**</u> exceed the max. permitted operating pressure PS of a hydraulic accumulator.

2. PROTECTION ON THE GAS SIDE

2.1. BURSTING DISC

2.1.1 Design


2.1.3 Standard types

Designation	Burst pressures ± 10% at 50 °C	Part no.
Bursting	210 bar	3156148
disc plug 1/4'' NPT	250 bar	3156150
	300 bar	3156151
	330 bar	3341280*
	350 bar	3156152
Bursting	210 bar	3516441
disc plug G 1/4"	330 bar	3560189
ISO228	400 bar	3358418

* preferred models

others on request

2.1.4 **FPS adapter for bursting disc** To protect standard and low pressure bladder accumulators, the adapter shown below must be ordered with the bursting disc:

L [mm]	L1 [mm]	D1	Carbon steel	Stainless steel
90.5	40	1/4" NPT	366694	_
81.5	30	1/4" NPT	-	3117711
90.5	40	G 1/4" ISO228	364802	-
81.5	30	G 1/4" ISO228	-	3521154

E 3.552.5/01.17

2.1.2 Function

If the pressure exceeds the permitted level, the bursting disc shatters, permanently opening the port. This reduces the gas pressure by discharging the nitrogen completely.

Bursting discs are designed for different burst pressures and are supplied with a certificate of conformity.

Bursting discs are made either entirely of stainless steel, or from an alloy based on stainless steel and nickel.

2.2. TEMPERATURE FUSE

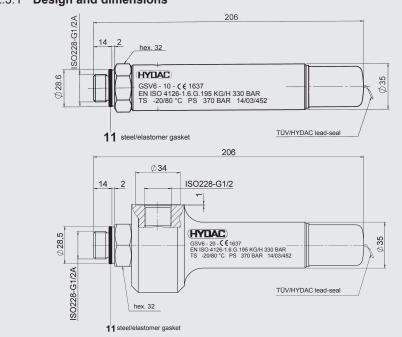
HYDAC offers two different kinds of temperature fuse. In addition to the temperature fuse in carbon steel and stainless steel, which is suitable for bladder accumulators, HYDAC also offers a temperature fuse of the type GMP6, which is approved according to the European Pressure Equipment Direction (PED). It is made of stainless steel and has a CE mark.

2.2.1 Function

Temperature fuses are "devices with a safety function" and are used to release the gas pressure by discharging the nitrogen completely when an increase in temperature reaches unacceptable levels (e.g. in the case of fire).

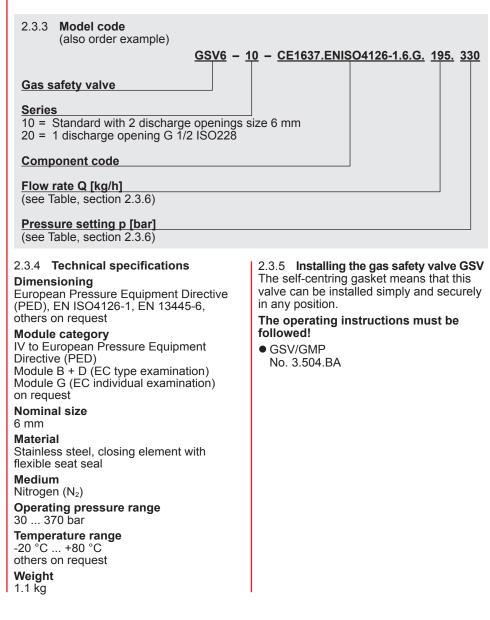
2.2.2 Design/technical data/standard models

Туре	Temperatur	e fuse	Temperat	ure fuse GMP6	
Design		Housing Discharge opening Screw-on thread 7/8-14UNF		Housing Discharge opening Screw-in thread G 1/4 - ISO 228	
Permitted operating pressure	≤ 450 bar		50 420) bar	
Temperature range	-10 °C +8	30 °C	-40 °C	+120 °C	
Melting temperature	between +1	60 °C and +170 °C	between +160 °C and +170 °C		
Standard types	363501*	Temperature fuse 7/8-14UNF	3517438	GMP6-10-CE1637	
	3094166*	Temperature fuse 7/8-14UNF with eye bolt (for crane hook)	3521196	GMP6-10-CE1637 with adapter for bladder accumulators	
			3584817	GMP6-10-CE1637 with adapter for piston and diaphragm accumulators	


* preferred models

2.2.3 Installation instructions

Туре	Temperature fuse	Temperature fuse GMP6
The operating instructions must be followed! • GSV/GMP No. 3.504.BA	Simple to retrofit (using the example of a bladder accumulator) by replacing the sealing cap with the temperature fuse.	Simple to retrofit (using the example of a bladder accumulator) by replacing the sealing cap with the temperature fuse GMP6 with adapter.
Bladder accumulator without temperature fuse		
Temperature fuse or temperature fuse GMP6 and adapter		


2.3. GAS SAFETY VALVE

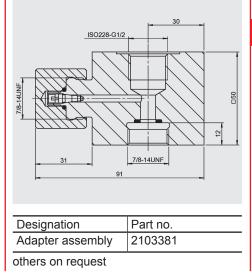
2.3.1 Design and dimensions

2.3.2 Function

The gas safety valve provides protection by reducing the pressure in a controlled way if pressure exceeds the permitted level unexpectedly. It is pre-set on the pressure side and lead-sealed by the authorised representative. It is also supplied with a certificate of conformity and a type approval.

2.3.6 Standard types

Selection of the response pressure is based on the maximum operating pressure of the hydraulic accumulator, according to the application.

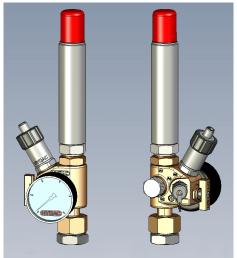

the applica		
Q [kg/h]	p [bar] ± 10 %	Part no. 1)
15	30	3123965
20	40	3123966
28	50	3123967
35	60	3124028
40	70	3124029
45	80	3124030
50	90	3124031
58	100	3124032
65	110	3124033
70	120	3124034
75	130	3124035
83	140	3124036
88	150	3124037
95	160	3124038
100	170	3124039
105	180	3124040
110	190	3124041
118	200	3124042
125	210	3124043
130	220	3124044
135	230	3124045
140	240	3124046
148	250	3124047
155	260	3124048
160	270	3124049
165	280	3124050
170	290	3124051
178	300	3124052
185	310	3124053
190	320	3124054
195	330	3124055
200	340	3124056
205	350	3124057
1) alle and an e		

¹⁾ others on request

> 350 bar = additional price required for EC type examination, please ask

2.3.7 Adapter for gas safety valve GSV6

To protect standard and low pressure bladder accumulators, the adapter shown below must be ordered with the gas safety valve GSV6.



E 3.552.5/01.17

HYDAC | 149

2.4. GAS SAFETY BLOCK

2.4.1 Design

Gas safety block GSB450 consists of a brass block (other materials on request) with integrated bleed and shut-off valve and ports for:

- Pressure gauge
- Gas safety valve (GSV6)
- Gas charging valve (e.g. Minimess)
- Pressure transmitter or pressure switch
- Bursting disc or temperature fuse

The gas safety valve connection is designed as a check valve. Therefore the valve can be changed, even if the system is pressurized.

2.4.2 Function

The GSB450 is an adapter block, which is mounted on an accumulator on the gas side and which can be fitted with various pressure devices, charging equipment, safety valves and other safety components.

2.4.3 Advantages

- Compact design
- Flexible connection options
- Variable indication options: bar, MPa or psi, analogue or digital (optional)
- Pressure gauge can be oriented according to customer requirement
- Accumulator can be charged with nitrogen, directly via Minimess valve
- Pre-charge pressure can be checked without FPU-1

	<u>GSB450</u> – 1 – 1 –
<u>Seri</u>	es
Mate	rial
	standard
_	(brass and add-on parts in carbon steel)
2 =	stainless steel
2 -	(brass and add-on parts in stainless steel) stainless steel
5 =	(on request)
	(on request)
A	umulator connection
	connection for SK/SBO
	connection for SB 7/8-14UNF
	connection for SB 5/8-18UNF
	connection for threaded pipe fitting DKS18
	special connection
	sure gauge display
-	none
	0 - 25 bar 0 - 100 bar
	0 - 160 bar
	0 - 250 bar
	0 - 400 bar
	special pressure gauge
Gas	charging connection
0	

0 = none

2.4.4 Model code

(also order example)

- 1 = Minimess valve M16x2
- 2 = Minimess valve M16x1.5
- 3 = Minimess valve M16x1.5 for permanent monitoring (see section 2.4.6)

<u>350</u>

1

9 = special connection

Safety equipment

- 0 = none
- 1 = GSV
- 2 = bursting disc3 = temperature fuse
 - tomporature ruse

Pressure range of the safety equipment

2.4.5 Technical data

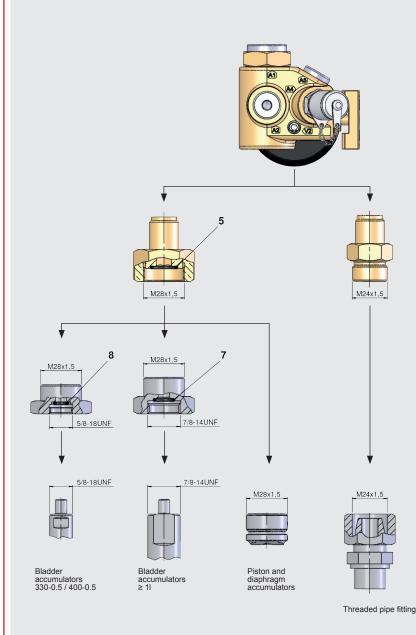
Medium Nitrogen (N₂)

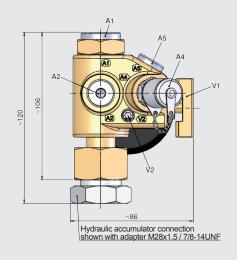
Permitted operating temperature -20 °C ... +80 °C

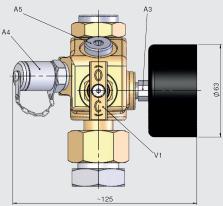
Max. operating pressure 400 bar / 5800 psi

Accumulator connection

Bladder accumulator: 7/8-14UNF with adapter


For bladder accumulators, the appropriate adapter is supplied. All other connections are sealed with blanking plugs.


Piston and diaphragm accumulators: M28x1.5


For piston and diaphragm accumulators the connection is a lock-nut with M28x1.5 thread as standard.

Weight

- Standard model for SB 1.6 kg
- Standard model for SBO and SK 1.5 kg

Standard model

The GSB450 is delivered with the following as standard:

- Shut-off valve
- Unloading valve
- Pressure gauge (0 400 bar, Ø 63 mm) and
- Gas charging connection, code 1 (Minimess threaded coupling, series 1620, M16x2)

The shut-off valve (V1) must always be closed following the charging and testing procedure to protect the pressure gauge (A3), Minimess valve (A4) and pressure switch/pressure transmitter (A5) from long-term pressure load.

The pressure side must be depressurised at release valve (V2).

If a pressure switch/pressure transmitter for permanent monitoring of the accumulator pre-charge pressure is screwed in at connection A5, the shut-off valve (V1) must be open. We recommend the gas charging connection with code 3 for this, see also options.

Options

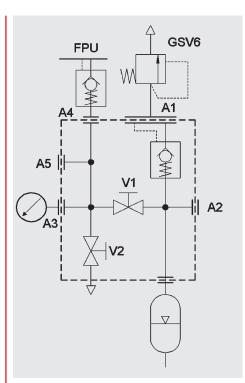
The GSB450 can be supplied with the following options*:

- Special pressure gauge, e.g.
 units other than bar/psi
 glycerin-filled
- Minimess gas charging valve with code 3 for permanent monitoring (series 1615, M16x1.5; stainless steel version)
- Version where all steel parts are stainless steel (A4)
- Safety devices (gas safety valve GSV6, bursting disc, temperature fuse)

*on request and must be ordered separately and at additional cost

2.4.7 Standard types

Designation	Part no.
GSB450-1-1-1-0	3534710
GSB450-1-1-2-1-0	3534711
GSB450-1-1-3-1-0	3534712
GSB450-1-1-4-1-0	3528946
GSB450-1-1-5-1-0	3426882
GSB450-1-2-1-1-0	3534713
GSB450-1-2-2-1-0	3534714
GSB450-1-2-3-1-0	3484861
GSB450-1-2-4-1-0	3433824
GSB450-1-2-5-1-0	3426905


2.4.8 Installation of gas safety block GSB

The operating instructions must be followed!

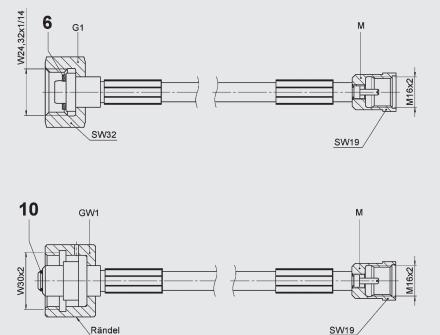
- GSB
 - No. 3.505.BA

E 3.552.5/01.17

Ports	Size	Standard configuration	Optional configuration
A1	G1/2-ISO228	Screw plug	Gas safety valve GSV6
A2		Screw plug	 Remote charging (on customer side) Bursting disc Temperature fuse
A3	G1/4-ISO228	Pressure gauge 0 - 400 bar	 for other measurement ranges, see section 2.4.4 special pressure gauge (please specify)
A4		Minimess valve M16x2	Minimess valve M16x1.5 (various versions possible, please request, see sections 2.4.4)
A5		Screw plug	Pressure transmitter e.g. HYDAC HDA, EDS

Connecting hoses

V1


V2

Connection hoses are designed for the particular maximum permitted operating pressure marked on them and 10,000 charging processes!

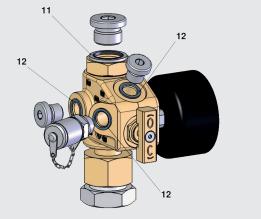
(HYDAC charging hoses comply with DIN EN ISO 4413 and DIN EN 853 to 857)

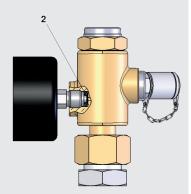
(int. hex. AF width 4)

Shut-off valve Release valve

SW19

Gas connection of nitrogen bottles	Minimess connection	Length [m]	Part no.
W30x2	M16x2	2.5	3434454
W30X2	M16x2	4	3434457
		2.5	3434424
W24.32x1/14	M16x2	4	3434451
		10	3526858


Suitable adapters for foreign nitrogen bottles can be found in the following catalogue section:


 Charging and testing unit FPU No. 3.501

E 3.552.5/01.17

2.4.10 **Spare parts** The following spare parts for GSB450 relate to the standard version:

Carbon steel/NBR

De	escription		Quantity	Item	Part no.
	eal kit for Insisting of		1	-	4024196
	Rhombic	seal 1/4"	1	2	-
	O-ring 15	5x2	1	5	-
	Seal ring		1	6	-
	O-ring 11	x2	1	7	-
	O-ring 9x	(2	1	8	-
	O-ring 5.	7x1.9	1	10	-
	Seal ring		1	11	-
	Seal ring		3	12	-
Pr	essure	0 - 10 bar			635139
ga	iuge	0 - 25 bar			635140
		0 - 100 bar	1	3	635141
		0 - 250 bar			635142
		0 - 400 bar			635143

PROTECTION ON THE 3. **FLUID SIDE**

3.1. GENERAL

The fluid side must be protected against pressures which exceed the permitted operating pressures by installing approved and appropriate safety valves.

HYDAC offers pressure relief valves (DB12) which have a pressure setting of up to 400 bar (set by HYDAC). The valve carries the CE mark and is built into Safety and Shut-off Blocks in the series DSV10 and SAF in nominal sizes DN10 and DN50 and is lead-sealed.

Further information is available from the following catalogue section:

 Safety and Shut-off Block SAF/DSV No. 3.551

4. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany +49 (0) 68 97 / 509 - 01 Tel.: Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

E 3.552.5/01.17

HYDAC | 153

HYDAD INTERNATIONAL

Supports for

Hydraulic Accumulators

1. DESCRIPTION

1.1. GENERAL

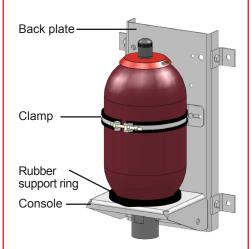
HYDAC supports are used to mount all types of hydraulic accumulator safely and simply. In addition to the standard delivery programme described below, customised, application-specific supports are available on request. For further information and guidance, see:

 HYDAC Accessories Product catalogue No. 61.000

1.2. APPLICATION

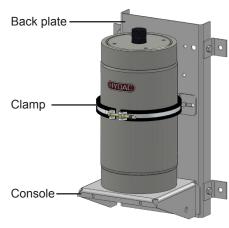
The optimum mounting type strongly depends on the use, the type and the size of the accumulator. Clamps, consoles and accumulator sets are all possible options. As they are safety equipment, our supports must only be attached and installed by trained staff.

Support clamps are designed for static use. For dynamic stresses, specially designed clamps are available on request.

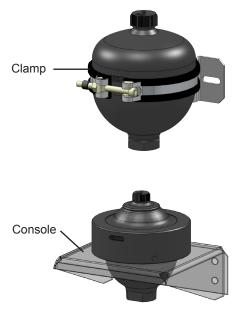

The number of clamps stated in the following overviews is given as a recommendation – the number may vary depending on the accumulator size and the particular application.

More information on HYDAC hydraulic accumulators is available in the following catalogue sections:

- Bladder Accumulators Low Pressure No. 3.202
- Bladder Accumulators Standard No. 3.201
- Piston Accumulators Standard No. 3.301
- Piston Accumulators SK280 No. 3.303
- Diaphragm Accumulators No. 3.100
- Hydraulic accumulators with back-up nitrogen bottles No. 3.553


1.2.1 Bladder accumulator

Clamps, consoles and accumulator sets can be used for optimum mounting of the bladder accumulator. The console of the bladder accumulator is equipped with a rubber support ring.


1.2.2 Piston accumulator

Clamps, consoles and accumulator sets can also be used for piston accumulators. In this case, the console is not equipped with a rubber support ring. Please request the accumulator set for piston accumulators separately, as the design may vary considerably depending on the accumulator's nominal volume.

1.2.3 Diaphragm accumulator

Weld-type diaphragm accumulators are fastened with an accumulator clamp and screw-type diaphragm accumulators with a console. Accumulator sets are not used for diaphragm accumulators.

1.3. MATERIALS

The following materials are available as standard:

Clamp Fastening, foot Clamping band Insert	zinc-plated stainless steel PE/PP/NBR see section 3.1
Console Rubber support ring*	zinc-plated NBR
Accumulator set Clamp Console Back plate Other materials (e.g. available on request.	see above see above zinc-plated stainless steel)

are

SELECTION TABLES FOR SUPPORTS 2.

2.1. BLADDER ACCUMULATORS AND GAS PRESSURE VESSELS

The following table shows the recommended mounting type for each series and volume. The number of clamps can vary depending on the requirements and on the length of the accumulator. The stated number of clamps is a recommendation.

		NO	min	al v	olur	ne [IJ			—							_										
		SB330(H)								SB400				SB550		SB500 /	00000	SB40(H)					SB35HB		SN360		SN600
<u>Designation</u> Clamp	Part no.	-	2.5	4+6+10 simline version	10-20	32+50	60+80	100+130	160+200	0.5	4	10-20	32+50	-	2.5+5	10+20	32+50	2.5+5	10+20	32+50	70-130	190+220	20	32+50	50	75(C)	50+75
HyRac 96-100/100 ST	445041									1																	
HyRac 106-114/115 H3 ST	444905									L.								2									
HyRac 110-118/124 H10 ST	445042	1	2																								-
HyRac 121-129/133 H8 ST	444906	† ·	-											1	2												
HyRac 167-175/178 H5 ST	445043			1*							1																
HyRac 216-224/226 H5 ST	445047	1																	1	2			1	2			1
HyRac 223-230/231 H3 ST	445048	1			1	2														_			L.	-	2		
HyRac 225-234/234 H3 ST	445049											1	2													2	3*
HSS 242	362712															1	2										
HRVMS 3 R 268-279/276 ST	3559057																									2**	
HRGKSM 4 R 352-363/360 ST	444795						2	3													2						
HRRBS 17 B1L 406 PP ST M ZN B145 H525	3434519								3													3					
Console										· · · · ·				-													
KBK 167/G	2107989			1																							
KBK 222/G	2100651				1	1						1	1			1	1		1	1			1	1	1		1
KBK 360/G	2107990						1	1																		1	
Accumulator set																											
SEB 2.5	290787		1																								
SEB 4	238403			1							1																
SEB 6	2115851			1																							
SEB 10 slimline version	4189835			1																							
SEB 10	238407				1							1															
SEB 13-20	240598				1							1															
SEB 32	238409					1							1														
SEB 50	240599					1							1														
SEBL 60-80	3605561						1																				
SEBL 100-130	372132							1																			
SEH 2.5	2105194														1												
SEH 5	2105195														1												
SEH 10	378952															1											
SEH 20	298181															1											
SEH 32	298182																1										
SEH 50	298183																1										
SEM 2.5	3007402																	1									
SEM 5	3007423																	1									
SEM 10	3007424																		1								
SEM 20	3007425																		1								
SEM 32	3007426																			1							
SEM 50	3007427																			1							
SEHB 20	3007431																						1				
SEHB 32	3007432																							1			
SEHB 50	3007433	1	1											1							1			1			

 $^{\ast}\,$ 2 clamps for SB330-10 litres slimline version or SN600-50 litres ** C = compact version

others on request

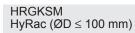
2.2. PISTON ACCUMULATORS

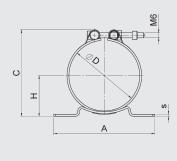
The following table shows the recommended mounting type for each piston accumulator type. The clamp is selected on the basis of the accumulator's external diameter. Depending on the application and length of the accumulator, we recommend that several clamps are used. To prevent deformation of the cylinder, clamps should preferably be mounted near the end caps.

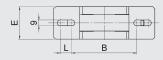
			n dian	-													
		50	-	0		30		00	12	25	150	18	80	200	2	50	> 250
				1	1	diamet	er [mr	n]		·	,						
Designation	Part no.	60	75	80	95	100	120	125	150	160	180	210	220	235	286	300	> 300
Clamps SK280																	
HRGKSM 0 R 58-61/62 ST	3018442]
HRGKSM 0 R 73-76/76 ST	444912		•														on request
HRGKSM 0 R 92-95/96 ST	444995																on l
HRGKSM 1 R 119-127/124 ST	444505																ē
HRGKSM 1 R 146-154/151 ST	444321																
Clamps SK Standard																	
HRGKSM 0 R 77-80/80 ST	3018445			•													
HyRac 96-100/100 ST	445041					•											
HyRac 121-129/133 H8 ST	444906							•]
HyRac 160-167/169 H5 ST	444910									•							L [
HyRac 176-185/187 H5 ST	445044										•						on request
HyRac 209-217/223 H10 ST	445046											•					edr
HyRac 216-224/226 H5 ST	445047												•				
on request	-	1												•			1
HSS 286	237395	1													•		1
HSS 310	237389	1														•	1
Consoles		1															
KBK 126	290530							1									ц.
KBK 219	238042											1	1				on request
KBK 310	238043														1	1	edr
on request	-													1			

2.3. DIAPHRAGM ACCUMULATORS

2.3.1 Weld type

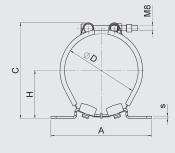

2.3.2 Screw type

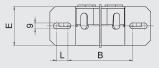

Clamps	Part no.	Type of accumulator
HyRac 62-65/65 ST	445037	SBO250-0.075E
HyRac 73-76/76 ST	445038	SBO210-0.16E
HRGKSM 0 R 77-80/80 ST	3018445	SBO160-0.16E
HRGR3WI 0 R 77-60/60 31	3016445	SBO300-0.16E
HyRac 92-95/96 ST	445040	SBO210-0.32E
TiyRac 92-95/90 31	445040	SBO300-0.32E
HyRac 100-105/106 H3 ST	444904	SBO160-0.5E
	444904	SBO210-0.5E
HyRac 106-114/115 H3 ST	444905	SBO100-0.7E
HyRac 110-118/124 H10 ST	445042	SBO140-0.75E
HyRac 110-118/1241110 31	445042	SBO330-0.6E
		SBO210-0.75E
		SBO250-0.75E
HyRac 121-129/133 H8 ST	444906	SBO250-1E
HyRac 121-129/133110-31	444900	SBO330-0.75E
		SBO330-1E
		SBO350-0.6E
HyRac 133-142/142 H3 ST	444907	SBO200-1E
HyRac 143-151/151 H3 ST	444908	SBO140-1.4E
	444900	SBO210-1.4E
		SBO250-1.4E
HyRac 152-159/160 H3 ST	444909	SBO250-2E
		SBO330-1.4E
HyRac 160-167/169 H5 ST	444910	SBO100-2E
		SBO210-2E
		SBO210-2.8E
HyRac 167-175/178 H5 ST	445043	SBO250-2.8E
Hynac 107-173/170 H3 51	440040	SBO330-2E
		SBO330-2.8E
		SBO330-3.5E

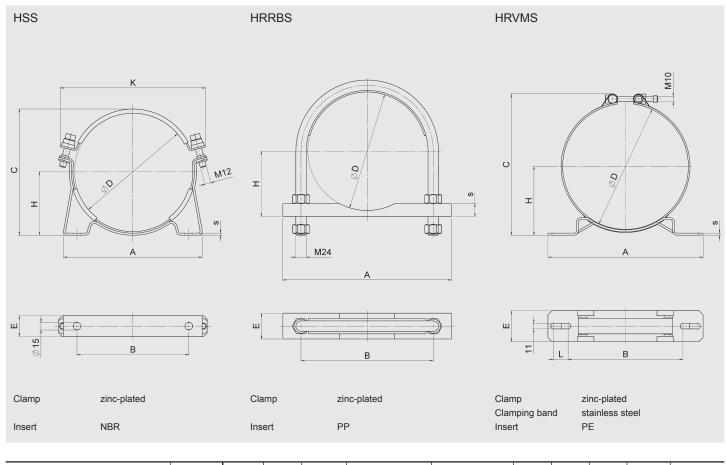

Consoles	Part no.	Type of accumulator
KMS 210	358989	SBO400-1.3A6
KMS 220	359922	SBO100-2A6
	309922	SBO250-2A6
KMS 280	359925	SBO400-2.8A6
KMS 310	359927	SBO400-4A6

3. TECHNICAL DATA

3.1. CLAMPS

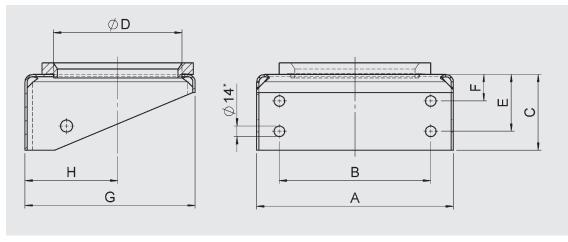

Fastening, foot Clamping band Insert


zinc-plated stainless steel PE Fastening, foot Clamping band Insert


zinc-plated stainless steel PE, NBR

Designation	Part no.	A	В	C max	ØD (from - to)	H (from - to)	E	L	s	K max.	Weight
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HRGKSM 0 R 58-61/62 ST	3018442			83	58 - 61	37.3 - 38.8		6			0.16
HRGKSM 0 R 73-76/76 ST	444912	120	85	96	73 - 76	43.5 - 45	40]		0.22
HRGKSM 0 R 77-80/80 ST	3018445	120	00	100	77 - 80	45.5 - 47	40	8	3		0.22
HRGKSM 0 R 92-95/96 ST	444995			115	92 - 95	52.5 - 54				_	0.24
HRGKSM 1 R 119-127/124 ST	444505	156	100	154	119 - 127	66.8 - 70.8	50	18			0.36
HRGKSM 1 R 146-154/151 ST	444321	150	100	181	146 - 154	80.5 - 84.5	50	18	3		0.39
HRGKSM 4 R 352-363/360 ST	444795	400	322	398	352 - 363	187.7 - 193.2	60	28	4		1.4
HyRac 62-65/65 ST	445037			85	62 - 65	38 - 39.5					0.16
HyRac 73-76/76 ST	445038	120	85	96	73 - 76	43.5 - 45	40	8	3		0.16
HyRac 92-95/96 ST	445040	120	00	115	92 - 95	52.5 - 54	40	0	3	-	0.17
HyRac 96-100/100 ST	445041]		120	96 - 100	54.5 - 56.5					0.17
HyRac 100-105/106 H3 ST	444904			135	100 - 105	59 - 62					0.4
HyRac 106-114/115 H3 ST	444905]		143	106 - 114	62.5 - 66					0.41
HyRac 110-118/124 H10 ST	445042]		156	110 - 118	72.5 - 77					0.42
HyRac 121-129/133 H8 ST	444906	156	100	165	121 - 129	75.5 - 80	60	18	3	-	0.43
HyRac 133-142/142 H3 ST	444907			174	133 - 142	76.5 - 82.5					0.44
HyRac 143-151/151 H3 ST	444908	1		182	143 - 151	83 - 86.5]				0.45
HyRac 152-159/160 H3 ST	444909	1		191	152 - 159	87 - 91	1				0.46
HyRac 160-167/169 H5 ST	444910	1		197	160 - 167	89 - 93	ĺ				0.7
HyRac 167-175/178 H5 ST	445043	1		207	167 - 175	92.5 - 96.5	1				0.72
HyRac 176-185/187 H5 ST	445044	1		241	176 - 185	97 - 102.5					0.75
HyRac 209-217/223 H10 ST	445046	236	152	255	209 - 217	122.5 - 126.5	60	32	4	_	0.77
HyRac 216-224/226 H5 ST	445047	1		256	216 - 224	120 -124	1				0.77
HyRac 223-230/231 H3 ST	445048	1		259	223 - 230	120.5 - 123.5					0.78
HyRac 225-234/234 H3 ST	445049			265	225 - 234	123 -127.5					0.79

HyRac (\emptyset D \ge 100 mm)


Designation	Part no.	А	В	C max	ØD (from - to)	H (from - to)	E	L	s	K max.	Weight
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
HSS 222/229	235224*	270	216	244	226	123				295	1.7
HSS 242	362712	268	216	265	242	136	10	_		305	1.7
HSS 286	237395	332	280	314	286	163	40 –	-	4	355	2.1
HSS 310	237389	332	280	333	310	170				380	2.1
HRRBS 17 B1L 406 PP ST M ZN B145 H525	3434519	540	440	450	410	220	60	-	30	-	6.15
HRVMS 3 R 268-279/276 ST	3559057	300	222	311	268 - 279	144.8 - 150.9	60	28	4	_	1.1

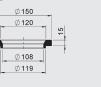
* alternative to Part no. 445048 and 445049

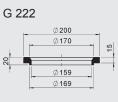
E 3.502.27/01.17

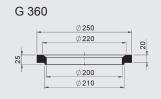
3.2. CONSOLES

3.2.1 KBK consoles for bladder accumulators and gas pressure vessels

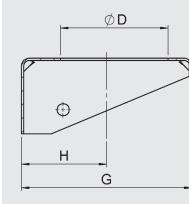
* Ø22 for KBK 360/G

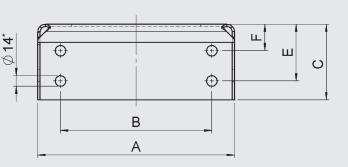

Designation	Part no.	A [mm]	B [mm]	C [mm]	ØD [mm]	E [mm]	F [mm]	G [mm]	H [mm]	Weight [kg]
KBK 167/G	2107989	260	200	100	120	75	35	225	92	2.5
KBK 222/G	2100651	260	200	100	170	75	35	225	123	2.4
KBK 360/G	2107990	390	270	240	211	180	60	390	195	20.1

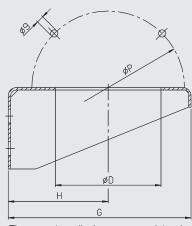

Spare Parts

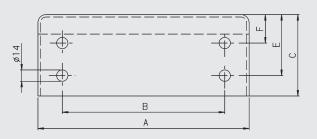

Part no.
238526
236997
3002160
236996
357959
355966

Rubber support ring G 167


2

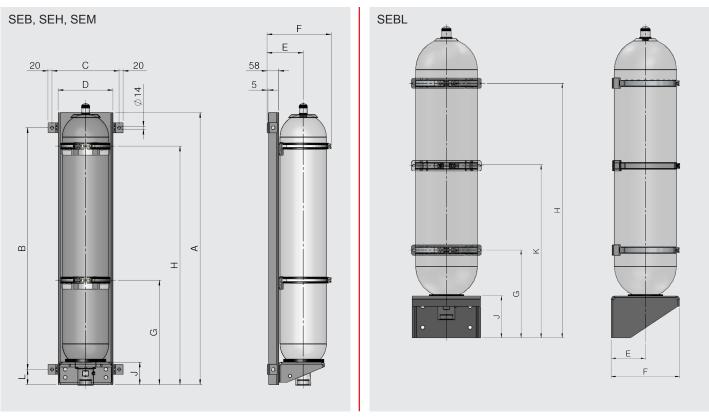



3.2.2 KBK consoles for piston accumulators



* Ø22 for KBK 310

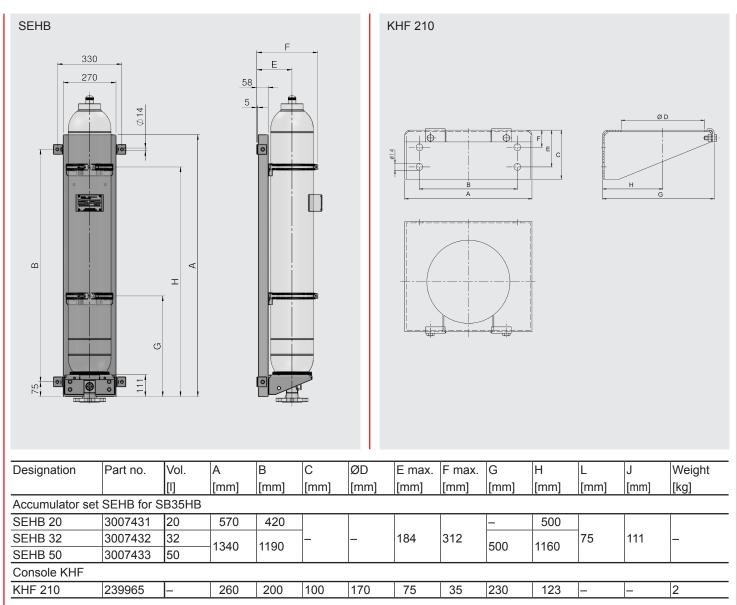
Designation	Part no.	А	В	С	ØD	E	F	G	Н	Weight
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
KBK 126	290530	175	100	60	65	36	-	150	77	1.1
KBK 219	238042	270	180	100	135	80	40	250	123	6.5
KBK 310	238043	330	220	200	190	140	60	340	170	18.3



The screw-type diaphragm accumulators have	
threaded bores M8 in the lock nut for fixing to	
the KMS console.	

Designation	Part no.	А	В	С	ØD	ØP	E	F	G	Н	ØI	Weight
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
KMS 210	358989	260	200	100	170	180	- 75	35	225	100	14	2.4
KMS 220	359922	200	200	100	170	188	/5	35	225	123	14	2.4
KMS 280	359925	-330	220	200	215	230	-140	60	340		22	18.3
KMS 310	359927	330	220	200	245	265	140	00	540	170	~~	10.5

E 3.502.27/01.17


3.3. ACCUMULATOR SET FOR BLADDER ACCUMULATORS

Designation	Part no.	Vol.	A	В	С	D	E max.	F max.	G	Н	K	L	J
		Im	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
SEB/SEBL for SB330)/440												
SEB 2.5	290787	2.5	460	310	198	138	134	209	220	410		75	-
SEB 4	238403	4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	320						270		45	95
SEB 6	2115851	6	570	420 1190 420 330 1190 - 310 - 310 600 420 330 198 420 330 198 420 330 198 420 330 198 420 330		154	285		415				
SEB 10 slimline version	4189835	10	1340	1190					500	1160			
SEB 10	238407	10	580		330	270				330			
SEB 13-20	240508	13	570	420	330	270			-	500	-	75	111
SEB 13-20	240590	20	570				185	318		500			
SEB 32	238409	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1100						1160				
SEB 50	$\begin{array}{ c c c c c c } & [mm] & [mm] & [mm] & [mm] \\ \hline SEBL for SB330/440 \\ \hline 2.5 & 290787 & 2.5 & 460 & 310 & 19 \\ \hline 4 & 238403 & 4 & 410 & 320 \\ \hline 6 & 2115851 & 6 & 570 & 420 \\ \hline 10 similine version & 4189835 & 10 & 1340 & 1190 \\ \hline 10 & 238407 & 10 & 580 & \\ \hline 10 & 238407 & 10 & 580 & \\ \hline 10 & 238407 & 13 & 570 & 420 & \\ \hline 10 & 238409 & 32 & 1340 & 1190 & \\ \hline 5 & 240599 & 50 & 1340 & 1190 & \\ \hline 5 & 240599 & 50 & 1340 & 1190 & \\ \hline 5 & 240599 & 50 & 1340 & 1190 & \\ \hline 6 & 80 & - & - & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 80 & - & & - & - & \\ \hline 6 & 10 & 372132 & 100 & \\ \hline 5 & 2105194 & 2.5 & 460 & 310 & 19 \\ \hline 5 & 2105195 & 5 & 750 & 600 & \\ \hline 10 & 378952 & 10 & \\ \hline 5 & 2105195 & 5 & 750 & 600 & \\ \hline 10 & 378952 & 10 & \\ \hline 5 & 298181 & 20 & \\ \hline 5 & 298182 & 32 & \\ \hline 10 & 378952 & 10 & \\ \hline 5 & 3007422 & 2.5 & 460 & 310 & 19 \\ \hline 6 & SB40 & & & \\ \hline 2.5 & 3007423 & 5 & 750 & 600 & \\ \hline 10 & 3007424 & 10 & \\ \hline 5 & 3007425 & 20 & \\ \hline 32 & 3007426 & 32 & 1340 & 1190 & \\ \hline \end{array}$						1100						
SEBL 60-80	III Imm] Imm for SB330/440 290787 2.5 460 310 238403 4 410 320 2115851 6 570 420 line version 4189835 10 1340 1190 238407 10 580 420 240598 13 570 420 240599 50 1340 1190 240599 50 1340 1190 240599 50 1340 1190 240599 50 1340 1190 240599 50 1340 1190 3605561 600 130 1190 130 372132 100 1100 500/550/600 2105194 2.5 460 310 298181 20 570 420 298182 32 1340 1190 298183 50 1340 1190 3007423 5						500	930					
SEBL 00-00	3003301	80	32 1340 50 1340 60 - 80 - 00 30 2.5 460 5 750 10 570				195	390	500	1200			240
SEBL 100-130	272122	100	_	-	- 198	-	195	390		1450	950		240
SEBL 100-150	$\begin{array}{c cccc} 0 & 240599 & 5\\ \hline 60-80 & 3605561 & \hline 6\\ \hline 8\\ 100-130 & 372132 & \hline 10\\ \hline 13\\ \mbox{or SB500/550/600} & & \\ \hline 2105194 & & \\ \hline 5 & 2105194 & & \\ \hline 6 & 2105195 & & \\ \hline 0 & 378952 & 1\\ \hline 10 & 298181 & & \\ \hline 22 & 298182 & & 3 \end{array}$	130								1750	1100		
SEH for SB500/550/6	600												
SEH 2.5	2105194	2.5	460	310	100	138	136	215	220	410			
SEH 5	2105195	5	750	600	190	130	130	215	220	650			_
SEH 10	378952	10	570	420						330		75	
SEH 20	298181	20	570	420	220	270	197	326	_	500	_	/5	111
SEH 32	298182	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1100	330	270	197	520	500	1160			111	
SEH 50	2105194 2.5 460 2105195 5 750 378952 10 570 298181 20 570 298182 32 1340	1190					500	1100					
SEM for SB40													
SEM 2.5	298181 20 570 298182 32 1340 298183 50 1340 0 3007402 2.5 460 3007423 5 750	310	109	120	100	104	220	410					
SEM 5	3007423	5	750	600	190	138	123	194	220	650			
SEM 10	3007424	10	570	420						330		75	
SEM 20	3007425	20	5/0	420	220	270	170	207	-	500	7-	75	114
SEM 32	3007426	32	1040	1100	330	270	179	307	500	1100	7		111
SEM 50	3007427	50	1340	1190					500	1160			

E 3.502.27/01.17 See catalogue section:

ACCUSET SB No. 3.503

The accumulator sets SEHF/SEHB are supplied with console KHF 210/G which can be opened at the front for easier mounting of the bladder accumulator.

6. NOTE

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described. please contact the relevant technical department. Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

HYDAC | 163

HYDAC INTERNATIONAL ACCUSET SB

1. DESCRIPTION

The HYDAC accumulator unit ACCUSET SB consists of a bladder accumulator SB, a safety and shut-off block SAF and the appropriate accumulator set SEB. The parts are designed for optimum compatibility and provide a compact, ready-to-install unit.

This space-saving combination simplifies the connection of the accumulator to the hydraulic system, reduces maintenance costs and considerably reduces installation costs.

Advantages:

- Simple and secure mounting of the accumulator at the installation site
- Connection of the accumulator with a hydraulic system via a safety and shut-off block
- Protects the accumulator from excessive pressure
- Discharge of the accumulator to the tank via a pressure release valve
- Separation of the accumulator from the system
- Two additional hydraulic connections on the shut-off block for accessories (e.g. pressure gauge).

1.1. STANDARD BLADDER ACCUMULATOR SB330

With a nominal volume of 1 to 50 litres. Special accumulators available on request.

See catalogue section:

 Bladder Accumulators Standard No. 3.201

The operating instructions must be followed! No. 3.201.BA

1.2. SAFETY AND SHUT OFF BLOCK SAF

In nominal sizes 10, 20 and 32, with manual or solenoid-operated/manual discharge and with the direct-acting pressure relief valve DB12 with CE marking, in accordance with the regulations of DIN EN 14359 "Gas-loaded accumulators for fluid power applications" and the European Pressure Equipment Directive (PED).

See catalogue section:

 Safety and Shut-off Block SAF/DSV No. 3.551

1.3. ACCUMULATOR SET SEB

For mounting the bladder accumulator with clamps, back plate, console and rubber support ring.

See catalogue section:

• Supports for Hydraulic Accumulators No. 3.502

2. TECHNICAL DATA

Dimensioning:

European Pressure Equipment Directive (PED) ¹⁾

Permitted operating pressure: 330 bar¹⁾

Bladder material:

The bladder material must be selected in accordance with the particular operating medium or operating temperature, see table titled "Working temperature and operating fluid" on the following page.

If discharge conditions are unfavourable (high p_2/p_0 pressure ratio, rapid discharge speed), the gas may cool to below the permitted temperature. This can cause cold cracking in the elastomer. The gas temperature can be calculated using the HYDAC Accumulator Simulation Program **ASP**.

ASF

Pressure limit: DB12 set to 330 bar ¹⁾

Release valve:

Operation voltage 24 V DC¹⁾

Fluid port P:

see table at section 5.

Surface:

Accumulator primed, SAF block phosphate-plated, accumulator set zinc-plated.

See catalogue section:

- HYDAC Accumulator Technology No. 3.000
- Charging and Testing Unit FPU No. 3.501

¹⁾ others on request

Working temperature and operating fluid: The permitted working temperature of a bladder accumulator is dependent on the application limits of the metal materials and the bladder. Outside this temperature range, special materials must be used. The operating fluid must also be taken into account. The following table displays a selection of elastomer materials with temperature range and a rough overview of resistant and non-resistant fluids, on a case-by-case basis, information must be requested regarding the resistance and the resistance must be tested specifically:

Materi	als	Material	Temperature range	Overview of the fluids ²⁾	
		code 1)		Resistant to	Not resistant to
NBR	Acrylonitrile butadiene	2	-15 °C + 80 °C	 Mineral oil (HL, HLP) Fire-resistant fluids from the 	Aromatic hydrocarbons Chlorinated hydrocarbons
	rubber	5	-50 °C + 50 °C	groups HFA, HFB, HFC Synthetic ester (HEES) Water	 (HFD-S) ● Amines and ketones ● Hydraulic fluids of type HFD-R
		9	-30 °C + 80 °C	• Sea water	Fuels
ECO	Ethylene oxide epichlorohydrin rubber	3	-30 °C +120 °C	 Mineral oil (HL, HLP) Flame-resistant fluids from the HFB group Synthetic ester (HEES) Water Sea water 	 Aromatic hydrocarbons Chlorinated hydrocarbons (HFD-S) Amines and ketones Hydraulic fluids of type HFD-R Flame-resistant fluids from the groups HFA and HFC Fuels
IIR	Butyl rubber	4	-50 °C +100 °C	 Hydraulic fluids of type HFD-R Flame-resistant fluids from the group HFC Water 	 Mineral oils and mineral greases Synthetic ester (HEES) Aliphatic, chlorinated and aromatic hydrocarbons Fuels
FKM	Fluorine rubber	6	-10 °C +150 °C	 Mineral oil (HL, HLP) Hydraulic fluids of type HFD, Synthetic ester (HEES) Fuels Aromatic hydrocarbons Inorganic acids 	 Amines and ketones Ammonia Skydrol and HyJet IV Steam

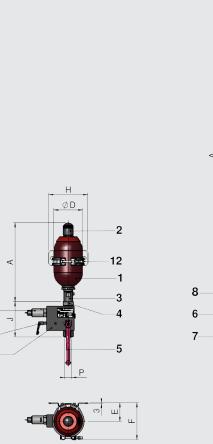
¹⁾ see section 3. Model code, accumulator bladder/seal material

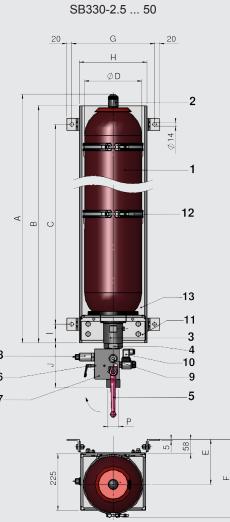
²⁾ others available on request

Temperatures exceeding this range (e.g. in the event of an external fire) can result in the accumulator bursting. To prevent this, HYDAC can provide additional temperature fuses and bursting discs, see catalogue section:

• Safety Equipment for Hydraulic Accumulators No. 3.552

3. MODEL CODE Not all combinations are possible. Order example. For further information, please contact HYDAC. ACCUSET SB 330 - 10 A 1 / 1 1 2 U - 10 Y 1 - 330 Type of accumulator SB = bladder accumulator Accumulator series Nominal volume [I] Fluid port A = standard connection Gas valve 1 = standard model Material of fluid port/block 1 = carbon steel 2 = stainless steel (dependent on type and pressure level) Shell material 1 = carbon steel 2 = stainless steel (dependent on type and pressure level) Shell material 2 = NBR / NBR 3 = ECO / NBR 4 = IIR / EPDM 6 = FKM / FKM Certification code SAF block series Type of directional poppet valve M = manual discharge Y = solenoid-operated and manual discharge (open when de-energised) Z = solenoid-operated and manual discharge (closed when de-energised)	Circuit diagram
Y = solenoid-operated and manual discharge (open when de-energised)	


E 3.503.6/01.17


PREFERRED MODELS 4.

		SB330-1A1/112U-330A	SB330-2.5A1/112U-330A	SB330-4A1/112U-330A	SB330-6A1/112U-330A	SB330-10A1/112U-330A	SB330-13A1/112U-330A	SB330-20A1/112U-330A	SB330-24A1/112U-330A	SB330-32A1/112U-330A	SB330-50A1/112U-330A	SAF10M12T330A	SAF10E12Y1T330A	SAF20M12T330A	SAF20E12Y1T330A	SAF32M12T330A	SAF32E12Y1T330A
Designation	Part no.	SB	SB	SB	SB	SB	SB	SB	S.	SB	SB	SA	SA	SA	SA	SA	SA
ACCUSET SB330-1A1/112U-10M-330	3033471	•										•					
ACCUSET SB330-1A1/112U-10Y1-330	3033472	•											•				
ACCUSET SB330-2.5A1/112U-10M-330	3033473		•									•					
ACCUSET SB330-2.5A1/112U-10Y1-330	3033474		•										•				
ACCUSET SB330-4A1/112U-10M-330	3033475			•								•					
ACCUSET SB330-4A1/112U-10Y1-330	3033476			•									•				
ACCUSET SB330-6A1/112U-10M-330	3033477				•							•					
ACCUSET SB330-6A1/112U-10Y1-330	3033478				•								•				
ACCUSET SB330-10A1/112U-10M-330	3033479					•						•					
ACCUSET SB330-10A1/112U-10Y1-330	3033480					•							•				
ACCUSET SB330-13A1/112U-10M-330	3033481						•					•					
ACCUSET SB330-13A1/112U-10Y1-330	3033482						•						•				
ACCUSET SB330-13A1/112U-20M-330	3033483						•							•			
ACCUSET SB330-13A1/112U-20Y1-330	3033484						•								•		
ACCUSET SB330-20A1/112U-20M-330	3033485							•						•			
ACCUSET SB330-20A1/112U-20Y1-330	3033486							•							•		
ACCUSET SB330-24A1/112U-20M-330	3033487								•					•			
ACCUSET SB330-24A1/112U-20Y1-330	3033488								•						•		
ACCUSET SB330-32A1/112U-20M-330	3033489									•				•			
ACCUSET SB330-32A1/112U-20Y1-330	3033490									•					•		
ACCUSET SB330-32A1/112U-32M-330	3033491									•						•	
ACCUSET SB330-32A1/112U-32Y1-330	3033492									•							•
ACCUSET SB330-50A1/112U-20M-330	3033493										•			•			
ACCUSET SB330-50A1/112U-20Y1-330	3033494										•				•		
ACCUSET SB330-50A1/112U-32M-330	3033495										•					•	
ACCUSET SB330-50A1/112U-32Y1-330	3033496										•						•

5. DIMENSIONS

SB330-1

Bladder accumulator	A _{max} [mm]	B [mm]	C [mm]	ØD _{max} [mm]	E [mm]	F [mm]	G [mm]	H [mm]	l [mm]
SB330-1 1)	302	-	-	110	74	147		-	
SB330-2.5 ²⁾	571	460	310	118	133	214	198	138	75
SB330-4	440	415	320	173	152	252		n] [mm] [mm] 156 – 138 75 50 270	50
SB330-6	560			175	152	205	[mm] [mm] - 156 198 138		
SB330-10	568]				214 198 253			
SB330-13	686	570	420				- 156 - 198 138 7 5 5 330 270		
SB330-20	896	1		229	100	217	330	270	75
SB330-24	1062]		229	100	317		156 - 138 75 50 270	
SB330-32	1411	1340	1190	1		80 317			
SB330-50	1931	1340	1190						
1) without back plate an	nd console	with one	HyRac cla	mn 110-11	8/124 H10) ST		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

 $^{1)}$ without back plate and console, with one HyRac clamp 110-118/124 H10 ST $^{2)}$ without console, with back plate and two HyRac clamps 110-118/124 H10 ST

SAF series	Nominal size SB330 [l]	P ISO 228	Connection for pressure gauge	J [mm]
SAF	1			142
	2.5			104
	4	G 1/2	2 x G 1/4	113
	6			102
	≥ 10			147
SAF20	2.5			135
	4	G 1		142
	6	01	G 1/4, G 1/2	132
	≥ 10			178
SAF32	≥ 10	G 1 1/2		203

Description	Item
Accumulator shell	1
Gas valve	2
Oil valve	3
Adapter S	4
Switching handle	5
Pressure release spindle	6
SAF safety block	7
Pressure relief valve	8
Connection for pressure gauge	9
Release valve	10
Console	11
HyRac clamp	12
Back plate	13

NOTE 6.

The information in this brochure relates to the operating conditions and applications described.

For applications and operating conditions not described, please contact the relevant technical department.

Subject to technical modifications.

HYDAC Technology GmbH Industriegebiet 66280 Sulzbach/Saar, Germany Tel.: +49 (0) 68 97 / 509 - 01 Tel.: +49 (0) 68 97 / 509 - 464 Fax: +49 (0) 68 97 / 509 - 464 Internet: www.hydac.com E-Mail: speichertechnik@hydac.com

8

6

7

																		_
																	_	
																		_
																	_	_
																	_	_
										_			_			 		
																	_	
										_								
																		_
																	_	
																		_
																		_
																	_	_
																	_	_
																		_

																		Т
																		_
								_			-							_
											-							+
																		Ţ
											-				_			+
																		+
																		Ţ
															_	_		+
																		+
													_		_			ļ
											-				_			+
											_							_
											-							
					_													
								_			-							_
					_			 			_							
																		+
																		ļ
								_			_		_		_	_	_	+
																		+
															_	_		ļ
															_			+
																		+
																		Ţ
															+	_		+
																		+
															_			-
											-						-	+
																		+
																		$^{+}$

m

BG

a

BR

CDN

ч

Ŋ

c

HYDAC-Büro Süd **71546 Aspach** Tel.: +49 (0)7191 / 34 51-0 Fax: +49 (0)7191 / 34 51-4033 HYDAC-Büro München M Anger 8 82237 Wörthsee / Etterschlag Tel.: +49 (0)8153 / 987 48-0 Fax: +49 (0)8153 / 987 48-4822 HYDAC-Büro Nürnberg Reichswaldstr. 52 90571 Schwaig Tel.: +49 (0)911 / 24 46 43-0 Fax: +49 (0)911 / 24 46 43-4260 DENMARK DENMARK HYDAC A/S Havretoften 5 5550 Langeskov Tel.: +45 70 27 02 99 Fax: +45 63 13 25 40 E-mail: hydac@hydac.dk X SPAIN HYDAC Technology SL ш C/ Solsones 54 – Pol. Ind. Pla de la Bruguera 08211 Castellar del Valles Tel.: +34 93 / 747 36 09 Fax: +34 93 / 715 95 42 E-mail: a.masoliver@hydac.es EGYPT Yasser Fahmy Hydraulic Eng. 65-66-68 Saudi Building, Kobba P.O. Box 6550 Sawah 11813 Cairo Ш Cairo Tel.: +202 (2) / 4520192, 4530922 Fax: +202 (2) / 4530638 E-mail: yasserf@yf-hydraulic.com.eg FRANCE HYDAC S à r l HYDAC S.à.r.l. Technopôle Forbach Sud B.P. 30260 **57604 Forbach Cedex** Tel.: +33 3 / 87 29 26 00 Fax: +33 3 / 87 85 90 81 E-mail: hydac_france@hydac.com Agence de Paris Tel.: +33 1 / 60 13 97 26 Agence de Lyon Tel.: +33 4 / 78 87 83 02 Agence de Bordeaux Tel.: +33 5 / 57 54 25 25 Agence de Martigues Tel.: +33 4 / 42 49 61 35 Agence Centre-Est Tel.: +33 3 / 81 63 01 65 FINLAND (Estonia) HYDAC OY Kisällintie 5 01730 Vantaa Ξ. Tel.: +358 10 773 7100 Fax: +358 10 773 7120 E-mail: hydac@hydac.fi Internet: www.hydac.fi GREAT BRITAIN GREAT BRITAIN HYDAC Technology Limited De Havilland Way, Windrush Park Witney, Oxfordshire OX29 OYG Tel: +44 1993 86 63 66 Fax: +44 1993 86 63 65 E mail: info@buda e ou ke B E-mail: info@hydac.co.uk Internet: www.hydac.co.uk
 Internet.
 www.nytester.

 GREECE
 Delta-P Fluid Technologies S.A.

 7, Grevenon Street
 11855 Athens

 11855 Athens
 Tel.: +30 210 341 0181

 Fax: +30 210 341 0183
 E-mail: delta_pi@otenet.gr
 GR HUNGARY HYDAC Hidraulika és Szűréstechnika Kft. Ezred u. 16 1044 Budapest Tel.: +36 1 359 93 59 Fax: +36 1 239 73 02 E-mail: hydac@hydac.hu Internet: www.hydac.hu HONG KONG HONG KONG HYDAC Technology (Hongkong) Ltd. Room 602, 6/F, Silvercord Tower 1 30 Canton Road, Tsim Sha Tsui Kowloon, Hong Kong TeL: +852 23 69 35 68 Fax: +852 23 69 35 67 ¥ ITALY HYDAC S.p.A. HYDAC S.P.A. Via Archimede 76 20864 Agrate Brianza (MB) Tel.: +39 039 / 64 22 11 Fax: +39 039 / 68 99 682 E-mail: hydac@hydac.it Internet: www.hydac.it INDIA INDIA HYDAC INDIA PVT. LTD. A-58 TTC Industrial Area, MIDC, Mahape Navi Mumbai 400 701 TeL: +91 22 / 411 18-888 Fax: +91 22 / 2778 11 80 E-mail: k.venkat@hydacindia.com JAPAN HYDAC CO. LTD. KSK Bldg. Main-2F 3-25-7 Hatchobori, Chuo-ku Tokyo 104-0032 Tel.: +81 3 / 35 37-3620 Fax: +81 3 / 35 37-3622 LUXEMBURG Friederich-Hydropart S.à.r.l. Route d'Esch, C.P. 38 3801 Schifflange Tel.: +352 54 52 44 Fax: +352 54 52 48 MALAYSIA HYDAC Technology Sdn. Bhd. 16, Jalan Pengacara U1 / 48 Temasya Industrial Park 40150 Shah Alam

Selangor Darul Ehsan Tel.: +60 3 / 5567 0250, 0251, 0253 Fax: +60 3 / 5567 0252 E-mail: query@hydac.com.my

MEXICO HYDAC International SA de CV Calle Alfredo A. Nobel No. 35 Colonia Puente de Vigas Tlalnepantla Edo. De México, CP 54090 Tel. + 52 55 5390 2334 Internet: www.hydacmex.com NORWAY HYDAC AS Berghagan 4 1405 Langhus Tel.: +47 64 85 86 00 Fax: +47 64 85 86 01 E-mail: firmapost@hydac.no NETHERLANDS HYDAC B.V. Vossenbeemd 109 5705 CL Helmond Tel.: +31 (0)88 0597 001 Fax: +31 (0)88 0597 020 E-mail: info@hydac.nl ₹ NEW ZEALAND HYDAC LTD. 108A Penrose Road Mount Wellington 1060 Auckland Ņ Auckland Auckland Tel.: +64 9271 4120 Fax: +64 9271 4124 E-mail: info@hydac.co.nz Internet: www.hydac.co.nz PORTUGAL ۵ POLAND (Latvia, Lithuania) HYDAC SP.Z O.O. ul. Reymonta 17 ā \$ CHILE R E-mail: info@hydac.co.id Internet: www.hydac.co.id Mitellite, www.iyo.oc. KOREA HYDAC Korea Co. Ltd. 6° floor Daewon Bidg. 175 Bangbae Jungang-ro, Seocho-gu Seoul 137-829 TeL: +822 / 591 09 31 Fax: +82 2 / 591 09 32 E-mail: johnkim@hydackorea.co.kr

PORTUGAL MOVICONTROL S.A. Rua Prof. Henrique Barros, 5B 2685-339 Prior Velho **1801 Lisboa Codex** Tel.: +351 21 94 2 9900 Fax: +351 21 94 1 3500 E-mail: geral@movicontrol.pt Internet: www.movicontrol.pt HYDAC SF2 0.0. ul. Reymonta 17 43-190 Mikołow Tel.: +48 32 / 226 26 55, 326 01 10 Fax: +48 32 / 226 40 42 E-mail: info@hydac.com.pl Internet: www.hydac.com.pl CHINA CHINA HYDAC Technology (Shanghai) Ltd. 28 Zhongpin Lu Shanghai Minhang Economic & Technological Development Zone Shanghai 200245 Tel.: +86 21 / 64 30 02 57 E-mail: hydacsh@hydac.com.cn RUSSIA HYDAC International ul. 4, Magistralnaja 5, office 31 123007 Moscow Tel: +7 495 / 980 80 01 Fax: +7 495 / 980 70 20 Fax: +7 495 / 980 70 20 E-mail: info@hydac.com.ru Internet: www.hydac.com.ru Nab. Obwodnogo kanala 138 190020 st. Petersburg Tel.: +7 812 / 495 9463 E-mail: petersb@hydac.com.ru Cechpield Offee Nurvinghtk E-mail: petersb@hydac.com.ru Technical Office Novokuznetsk ul. Niewskogo 1, office 300 **654079 Novokuznetsk** Tetl: +7 3843 99 1346 Fax: +7 3843 99 1345 E-mail: novokuz@hydac.com.ru Technical Office Ulyanovsk ul. Eremova 29, office 418 **432042 Ulyanovsk** Tetl: +7 8422 61 3453 Fax: +7 8422 61 3452 E-mail: uljan@hydac.com.ru **APGRENTIMA** ARGENTINA HYDAC Technology Argentina S.R.L. Av. Belgrano 2729 (B1611DVG) Don Torcuato Tigre / Buenos Aires Tel.: +54 11 4727-1155/-0770/-2323 E-mail: argentina@hydac.com CHILE HYDAC Tecnologia Chile Ltda. Las Araucarias 9080-9110 / módulo F Parque Industrial Las Araucarias 8720041 Quilicura / Santiago Tel: +56 2 / 5 84 67 54 Fax: +56 2 / 5 84 67 55 E-mail: guillermo.viertel@hydac.com

INDONESIA PT HYDAC Technology Indonesia PMA Komplek Pergudangan T8 No.27-29 Alam Sutera - Serpong Tangerang Selatan 15325 TeL: +62.21 2921 1671 / 9921 1672 Fax: +62.21 2921 1663

ROMANIA HYDAC SRL 12 Soseaua Vestului Street, Et 2 100298, Ploiesti, Prahova coun Prahova county Tel.: +40 244 575 778 Fax: +40 244 575 779 E-mail: hydac@hydac.ro Internet: www.hydac.ro

19

SWEDEN HYDAC Fluidteknik AB Domnarvsgatan 29 16353 Spånga Tel.: +46 8 / 445 29 70 Fax: +46 8 / 445 29 90 E-mail: hydac@hydac.se Internet: www.hydac.se

S

SGP

sK

Ъ

۲

≥

UKR

JSA

S

ZA

SINGAPORE SINGAPORE HYDAC Technology Pte Ltd. 2A Second Chin Bee Road Singapore 618761 Tel: +656 74174 58 Fax: +656 74104 34 E-mail: thomas.lek@jhydac.com.sg Internet: www.hydac.com.sg

SLOVAKIA

SLOVAKIA HYDAC S.R.O. Gorkého 4 036 01 Martin Tel.: +421 43 / 413 58 93, 423 73 94, 422 08 75 Fax: +421 43 / 422 08 74 E-mail: hydac@hydac.sk Internet: www.hydac.sk

SLOVENIA HYDAC d.o.o. Zeorebska Cesta 20 Zagrebska Cesta 20 2000 Maribor Tel.: +386 2 / 460 15 20 Fax: +386 2 / 460 15 22 E-mail: info@hydac.si Internet: www.hydac.si

THAILAND THAILAND AEROFLUID CO. LTD. 169/4, 169/5, Moo 1 Rangsit-Nakhonnayok Rd. Patumthanee 12110 Tel.: +66 2 / 577 2999 Fax: +66 2 / 577 2700 il: info@aerofluid.com

TURKEY TURKEY HYDAC AKISKAN KONTROL SISTEMLERI SAN. VE TIC. LTD. ŞTİ. Namik Kemai Mahallesi Adıle Naşik Bulvan, 174 Sok. No. 9 34513 Esenyurt - Istanbul TEL: +90 212 / 428 25 25 Fax: +90 212 / 428 25 25 Fax: +90 212 / 428 70 37 E-mail: indig Mydac.com.tr Internet: www.hydac.com.tr TAIWAN

TAIWAN HYDAC Technology Ltd. No. 18, Shude 1st Lane, South District Taichung City 40242 Tel: +886 4 / 2260 2278 Fax: +886 4 / 2260 2352 E-mail: kc.ehen@hydac.com.tw Internet: www.hydac.com.tw

Internet: www.hydac.com.tw UKRAINE HYDAC Kiew ul. Novokonstantinovskaya 9 Korpus 13. 2 Etage 04080 Kiev Tel: +38 044 /495 33 96, 495 33 97 Fax: +38 044 /495 33 98 E-mail: info@phdac.com.ua Internet: www.hydac.com.ua

Internet: WWW.nydac.com.ua USA HYDAC Technology Corporation HYDAC Corp. 2260 & 2280 City Line Road Bethlehem, PA 18017 TeL: +1610/266 31 00 Fax: +1610/266 35 40 E-mail: sales@hydacusa.com Internet: www.hydacusa.com

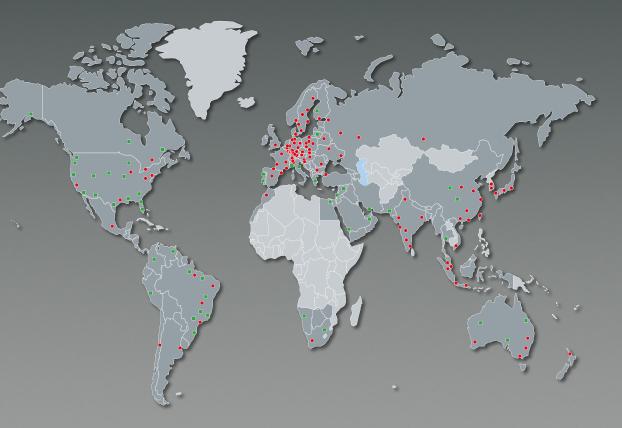
VIETNAM VIETNAM HYDAC International E-Town Building, Mezzanine Floor Executive office, Room 7 364 Cong Hoa Street, Tan Binh District Ho Chi Minh City Tel: + 404 88 120 545 Ext. 215 Fax: +84 88 120 546

SOUTH AFRICA

SOUTH AFRICA (Namibia, Zimbabwe) (NAmibia, Zimbabwe) HYDAC Technology Pty Ltd, Postnet Suite 304, Private Bag X10020 Edenvale 1610, Johannesburg Tel: +27 11.723 90 80 Fax: +27 11.7453 72 37 E-mail: hydacza@hydac.com

E-mail: hydacza@hydac.com HYTEC S.A. PO. Box 538 113 Koornhof Str., Meadowdale **Edenvale 1610, Johannesburg** Tel.: +27 11 / 573 54 00 Fax: +27 T1 / 573 54 01 E-mail: olivern@hytec.co.za

E 30.000.4/01.17



Global Presence. Local Expertise. www.hydac.com

HYDAC Headquarters
 HYDAC Companies

HYDAC Sales and Service Partners

(HYDAC) | TECHNOLOGY

HYDAC TECHNOLOGY GMBH

Industriegebiet 66280 Sulzbach/Saar Germany Phone

+49 6897 509-01 Fax:

+49 6897 509-454 Internet: www.hydac.com E-mail: speichertechnik@hydac.com

E 30.000.4/01.17